

ExpRessBio-Methods

Ecological and economic assessment of product systems system boundaries and calculation methods

Workshop on 23rd May 2017 in Brussels

Dr.-Ing. Daniela Dressler Dr. Klaus Thuneke, Dr. Edgar Remmele

Outline

- The ExpRessBio-Project
 - Motivation
 - Objectives and challenges
- ExpRessBio-Method and elements of harmonization
 - System
 - Assumptions and definitions
 - Result presentation and documentation
- Conclusion and outcome

Dressler P 17 K De 002 Folie 2

Motivation of the ExpRessBio-Project

- Identification of site-specific optimization potential for reducing greenhouse gas emissions of agricultural and forestry raw materials
- Deriving recommendations for action for the farmer and forester
 - → Default values, e.g. specified by RED, are not sufficient
- A specific knowledge about the source and amount of GHG-emissions from raw material production, distribution and use is required
- Additionally the knowledge of the economic impacts is also necessary

Folie 3

Dressler

Bundling of competences of evaluating agricultural and forestry raw materials in the "Expert group on resource management Bioenergy – ExpRessBio" in Bavaria

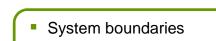
Challenges and objectives of ExpRessBio: Transparency and comparability of results

Challenge:

Despite of international standards, mostly non-comparable results because of different assumptions along the entire process chain

- → Definition of system boundaries
- → Choice of functional unit
- → Choice of data basis and quality
- → Method for dealing with co-products

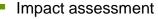
Development of a **harmonized and transparent method to evaluate ecological and economic impacts** of product systems from **both** agricultural and forestry raw materials exemplified for Bavaria



ExpRessBio-Method: Elements of harmonization

Analysing and assessment of ecological and economic impacts

HARMONIZATION



System

- Cut-off criteria
- Completeness
- Transparency

- Data basis (site-specific)
- Emission factors
- Allocation
- Credits
- Reference value and functional unit
- Reference systems
- Physical and chemical parameters

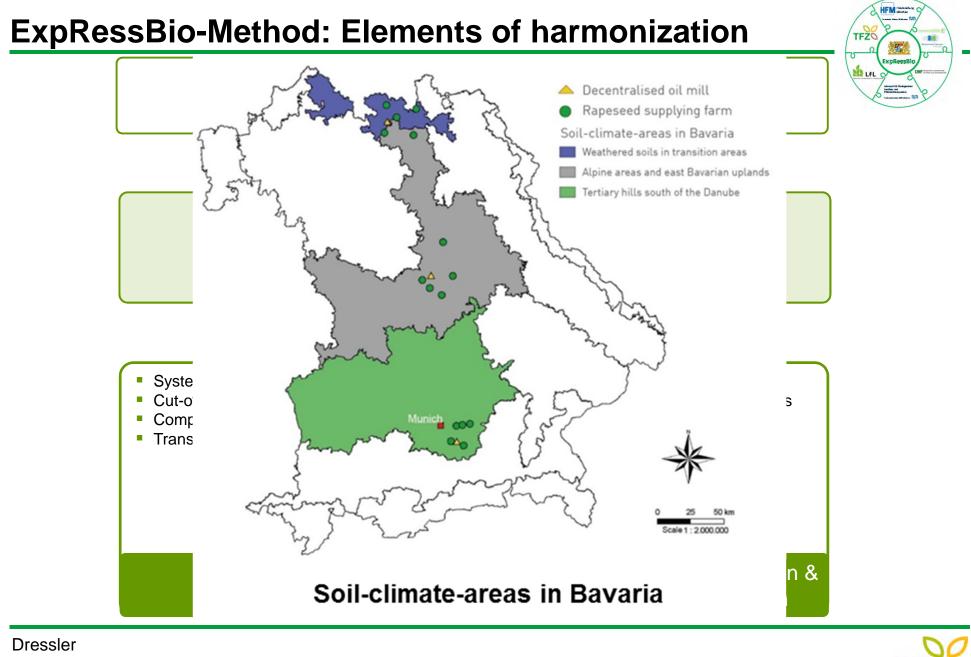
Assumptions & Definitions

- Diagrams and tables
- Database

Result presentation & Documentation

TFZ

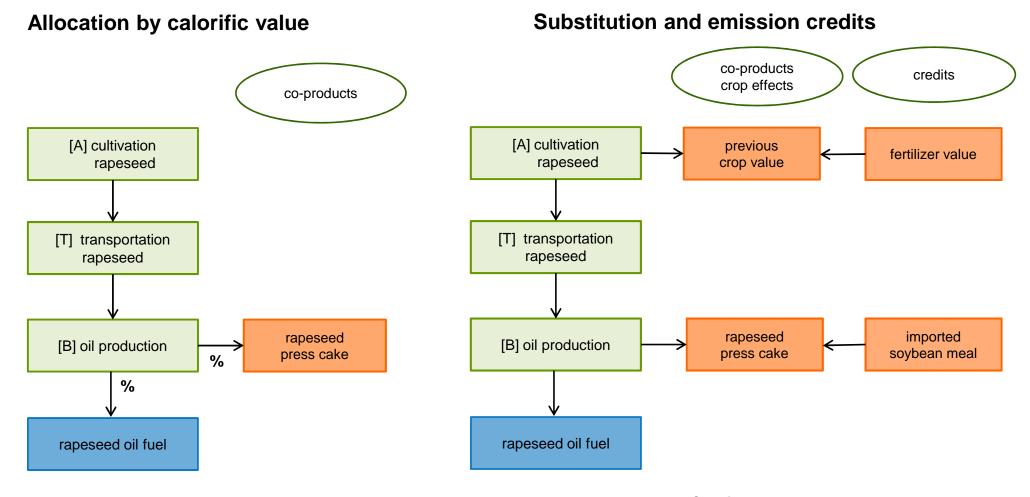
LFL


Laterati for Ca. Lavellani Lett

System description of ExpRessBio-Methods

Designation of p	product sys	te	Proc	Арр	V	Ancillary information				
Raw materi			[B] Trar	□[C] Conversion	[ł	□ [F] Effects outside the system boundary				
□ [A] F [A1] Site preparation	Production and [A2] Site ten		[B1] Stor a [B1.1] Storage [B1.2] Storage [B1.3] Loadine	□ [C1] Generation of electricity □ [C2] Provision of hea		 □ [F1] Credits for avoided burdens □ [F2] Direct land-use change 				
	□ [G] Substitution of reference products									
□ [V] Upstream processes										
Geographical representativer	ness: Chron	ological re	Annotations	3 :						

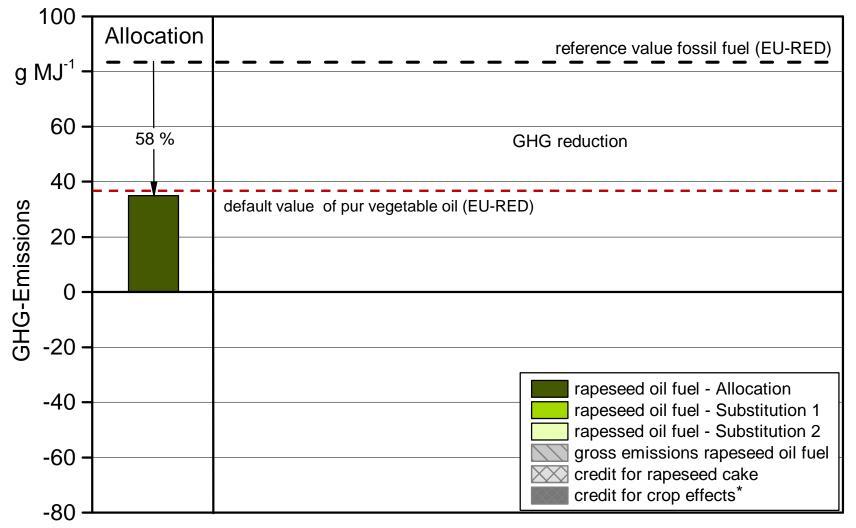
Dressler


P 17 K De 002 Folie 6

P 17 K De 002

Folie 7

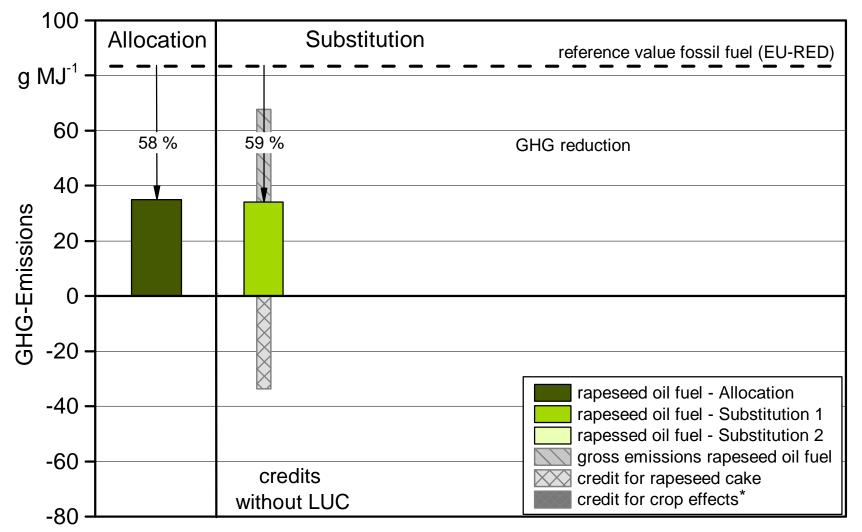
Evaluation of co-products


Percentage distribution of the emissions

Ratio of the energy output of the product (rapeseed oil) to the total energy output (rapeseed oil and rapeseed press cake)

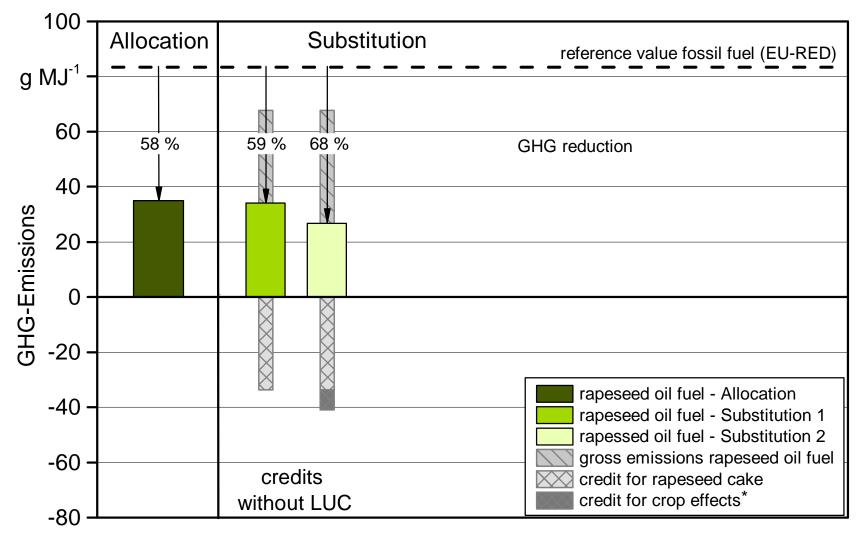
Credits for the avoided burden of the reference product

Dressler

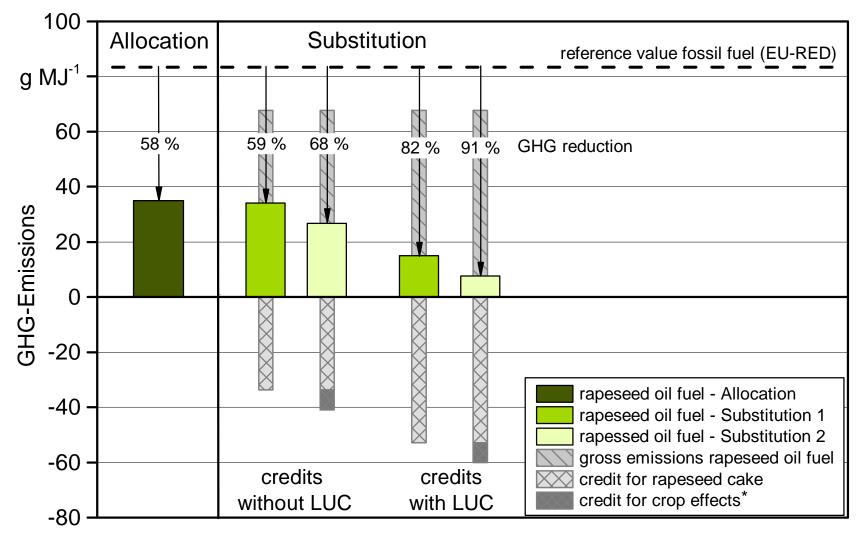


* Kage & Pahlmann (2013)

Dressler • Remmele P 17 K De 002 Folie 9


17 K Re020

* Kage & Pahlmann (2013)


Dressler • Remmele

* Kage & Pahlmann (2013)

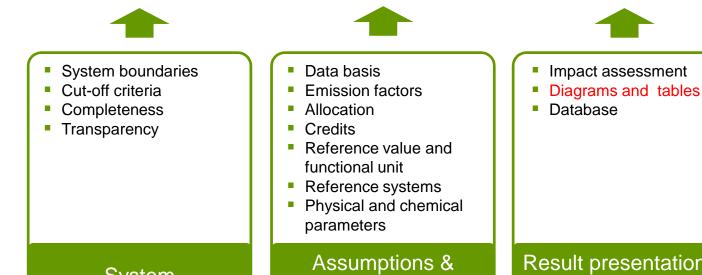
Dressler • Remmele

* Kage & Pahlmann (2013)

Dressler • Remmele

5.6.2	009 EN	Official Journal of the Euro	pean Union	L 140/25
(79)	It is in the interests of the Commu development of multilateral and bil		In order to avoid encouraging the cul rials for biofuels and bioliquids in pla	
(81)	be taken into ac emissions. The purposes of pol individual econ ments of transp tion method is to apply, is pr productive incer ally comparable method. For the	count in the casubstitution m licy analysis, b comic operator ort fuels. In the the most appr redictable over ntives and pro with those p purposes of p o, in its reporti	tion and use of fu alculation of green ethod is appropri- ut not <u>for the reg</u> rs and individual ose cases <u>the ener</u> opriate method, a time, minimises duces results that roduced by the su policy analysis the ng, present results	house gas ate for the <u>ulation of</u> <u>consign-</u> <u>rgy alloca-</u> <u>s it is easy</u> <u>s counter-</u> are gener- <u>ibstitution</u> <u>commis-</u>

Dressler • Remmele P 17 K De 002 17 K Re022


ExpRessBio-Method: Elements of harmonization

Analysing and assessment of ecological and economic impacts

Definitions

Result presentation & Documentation

Dressler P 17 K De 002 System

Aggregated / disaggregated results

Process		CO₂–eq in g MJ⁻¹	CO₂–eq in %
[A] Production and provision of biomass [A1] Site preparation		23.7	92.5 4.2
		1.0466	
[A1.1] Soil	preparation		
[A1.1]	Diesel consumption	0.4596	1.8
[V1]	Use of machines and equipment	0.0719	0.3
[V4]	Provision of diesel	0.0744	0.3
[A2] Site ter	nding	5.5753	21.7
[A2.3] Fer	tilizing		
[A1.1]	Diesel consumption	0.2528	1.1
[V1]	Use of machines and equipment	0.2959	1.2
[V4]	Provision of diesel	0.0459	0.2
[V6]	Provision of mineral fertilizer	4.6733	18.2

Dressler • Remmele

P 17 K De 002 15 K De 090 Folie 15

Conclusion

- Different assumptions hamper the comparability of GHG-mitigation results
 - → system boundaries
 - → functional unit
 - → geographic and chronological representativeness
 - \rightarrow choice of data basis
 - → the method for dealing with co-products
- Mean and default values are unsuitable to evaluate the optimization potential of GHG-mitigation options of the production and use of agricultural and forestry raw materials

Outcomes

The harmonized ExpRessBio-Method enables to

- describe the whole process chain, broken down into sub-processes, as well as all important information like functional unit, allocation method etc. in one fact sheet
- receive transparent and reproducible results
- Ink the results of ecological and economic evaluation to mitigation costs
- represent the results broken down into sub-processes for each impact category taken into account

Recommendations of the ExpRessBio-Project

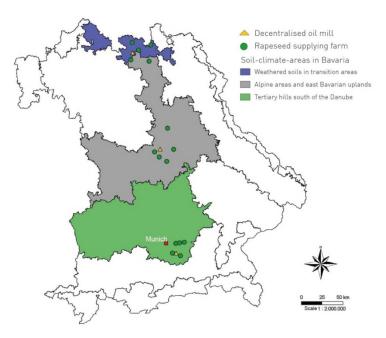
- to **apply the ExpRessBio-Method** including the system description for transparency
- to use regional and farm specific input data to calculate GHG-mitigation as basis for deriving recommendations for action for the farmer and forester
- to use additionally the substitution method for evaluating co-products and implementation in legal requirements like RED
- to evaluate crop rotation systems for considering the previous crop effect

Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe

Further Information: www.tfz.bayern.de

ExpRessBio Expres

Thank you for your attention!


funded by

Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten

Basis and quality of data

- Data requirements for calculating GHG-mitigation options of the production and use of agricultural and forestry raw materials
 - → Representative, complete, consistence, transparent and exact (ISO 14040/44)
 - → Avoidance of mean and default values by analyzing
 - agricultural field trials
 - trial farms
 - model regions
 - → Consideration of special regarding times
 - one crop for one year
 - whole crop rotation including crop effects
- Reasons:
 - Results based on mean and default values are non-transferable to site-specific conditions
 - → Soil and climate conditions have an influence on the results and thus, are highly important

Soil-climate-areas in Bavaria

Definitions for the substitution method

- The substitution of soy extraction meal imported, is based on the usable raw protein content (nXP)
 - Rapeseed cake of decentralized oil mills: 208¹ g nXP kg⁻¹ DM
 - Soy extraction meal¹: 319 g nXP kg⁻¹ DM
 - → In cattle feeding 1 kg soy extraction meal could be substituted by 1,53 kg rapeseed cake
- Origin of substituted soy extraction meal respectively soybean in Germany
 - 50 % of soy extraction meal is imported to 95 % from South America
 - 50 % of soy extraction meal is produced in Germany from imported soybeans.
 These soy beans are to 55 % from North America and to 45 % from South America

¹Preissinger et al. (2004)

Definitions for the substitution method

- Cultivation of soybeans in North and South America
 - **System boundary 1:** No consideration of land use change (LUC)
 - System boundary 2: Consideration of land use change in the cultivation of soybeans in South America caused by a significant increase of cultivation area (In Brazil: increase from 13.5 (2000) to 30 million ha (2014))¹

\rightarrow Proportional LUC in the amount of 8.4 % by Sutter²

Due to the applicable sustainability ordinance, no considering of LUC in the cultivation of rapeseed in Germany**

- Previous crop value of rapeseed cultivation based on field trials by Christian-Albrechts-Universität zu Kiel³
 - Cultivation wheat after rapeseed compared to cultivation wheat after wheat

¹ FAO (2016) ² Sutter (2006) ³ Kage & Pahlmann (2013)

Dressler ** LUC in the cultivation of rapeseed leads to five time less emissions compare to the cultivation of soy bean in South America

