Automatisierte Pheromonfallen für die Überwachung von Schadinsekten und Quarantäneschädlingen

DiMoTrap

Hannes Vogel, Nordwestdeutsche Forstliche Versuchsanstalt NW-FVA, Göttingen Dr. Ina Ehrhardt, Fraunhofer-Institut für Fabrikbetrieb und –automatisierung IFF, Magdeburg

Projektsteckbrief

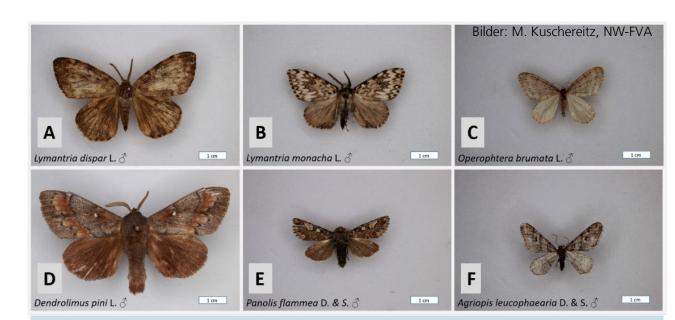
Entwicklung automatisierter Pheromonfallen für die laufende Überwachung von forstschädlichen Schmetterlingsarten

Laufzeit: 1.7.2021 - 31.12.2024

Projektpartner:

Förderung:

Gefördert durch:


aufgrund eines Beschlusses des Deutschen Bundestages

Entwicklung automatisierter Pheromonfallen für die laufende Überwachung von forstschädlichen Schmetterlingsarten

Hintergrund:

- Durch Klimaveränderungen können sich Schadinsekten im Wald massiv vermehren und enorme Zerstörungen verursachen.
- Die Überwachung von Forstschädlingen ist besonders wichtig, um ihre Reproduktion zu kontrollieren und Waldflächen vor größeren Schäden zu schützen.
- Eine der effektivsten Methoden ist die Insektenüberwachung mittels Pheromonfallen.
- Bisher verwendete, traditionelle Fallensysteme sind allerdings nicht optimal geeignet.

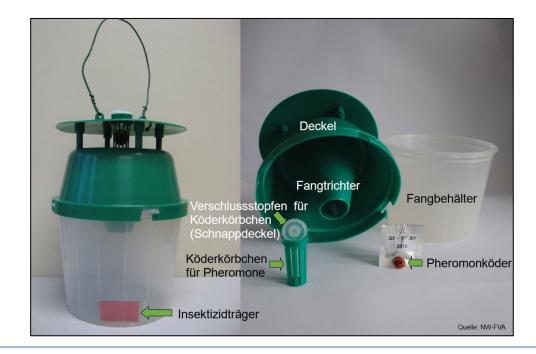
Modellarten:

- Schwammspinner (A-*Lymantria dispar*)
- Nonne (B-*Lymantria monacha*)
- Forleule (E-Panolis flammea)

Erweiterung:

- Kiefernspinner (D-Dendrolimus pini),
- Frostspanner (C-Operophtera brumata)
- Breitflügelspanner (F-Agriopis leucophaearia)

Entwicklung automatisierter Pheromonfallen für die laufende Überwachung von forstschädlichen Schmetterlingsarten


Monitoringprozesse für Falter

- Flug- und Überwachungszeiträume sind artspezifisch verteilt über das ganze Jahr
- Je Spezies eine Fallengruppe á 3 Fallen in Dreiecksanordnung
- Kiefernreinbestände mit armer Bodenvegetation
- Bestände mit hohem Eichenanteil (< 30%)
- i.d.R. wöchentliches Zählen der Fänge

Flugzeiten	31	32	33	34	35	36	37	38	39	40	41	42
	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Forleule												
Schwammspinner												
Nonne												
Kleiner Frostspanner												
Breitflügelspanner												

Klassische Falle

 Herausforderungen sind u.a. diskontinuierliche Pheromonabgabe im Fangzeitraum, Aufwand für und Genauigkeit bzw.
 Vergleichbarkeit der Auszählungen, Beifänge, ...

Funktionen der digitalen Falle

Kernthemen laut Zielstellung

Pheromonabgabe

Gezielte, artspezifische Abgabe von Pheromonen bzw. Lockstoffen an die Umwelt

Fänge detektieren & zählen

Detektion und Zählung der Fänge bzw. Zielorganismen

Energieversorgung der Systeme im Freiland

Geeignete Energieversorgung für autarken Betrieb der Falle über den Fangzeitraum

Daten(fern)übertragung

Datenvorverarbeitung und automatisierte Datenweitergabe an zuständige Stellen zur Auswertung

Vorgehen

Erstellung Anforderungskatalog unter Berücksichtigung von:

- Technologie und Funktionen
- Ökonomie, Ökologie und Biologie
- Handhabung, Lebensdauer
- Anwender- und Branchenspezifik, ...
- Anforderungen und Funktionen der Falle greifen ineinander und beeinflussen sich gegenseitig.
- Hinzu kommen vielfältige (meist erwartbare) Einflüsse, Wechselwirkungen und Hemmnisse (Technische, Biologische, Chemische, Physikalische, Faktor "Mensch")

Entscheidung für modularen, komponentenbasierten Ansatz im Hinblick auf variable Nutzeranforderungen

Vorgehen

Erstellung Anforderungskatalog

Definition von primären und sekundären Anforderungen

Konzeption und Entwicklung modularer Komponenten

• Vergleich verschiedener technischer Ansätze je Komponente und Prototyping

Versuchsmusterbau

• Bau von Einzelkomponenten und deren Zusammenführung zu einem integrierten Versuchsmuster

Erprobung in Labor-, Semifreiland und Freilandversuchen

 Verschiedene Zielspezies, verschiedene Standorte in Niedersachsen, Sachsen-Anhalt und Hessen

Pheromonabgabe

Vergleich, Auswahl und Test verschiedener technischer Varianten

- Abgabesystem für Festköder
- Mikropumpensystem für flüssige Pheromonlösung
- Konzept "Blister-System"

Pheromonabgabe

Pro und Contra der bisherigen Ansätze

- Festköderabgabe (Ressortabgabe):
 praxisnahe Option (robust, bewährte Köder, ...)
- Mikropumpe:
 Empfindliche Bauteile
 Einsetzbarkeit abhängig vom Lösungsmittel (technische und chemische Restriktionen)
 Erforderliche, zu Festködern vergleichbare Konzentration des Pheromons im Lösungsmittel schwierig zu bestimmen (Risiko der Über- oder Unterdosierung -> Vergleichbarkeit der Fangergebnisse)
- Konzept "Blister-System"
 siehe Festköderabgabe (perspektivische Weiterentwicklung)

Allgemeine Herausforderung:

• Verfügbarkeit vom Pheromonen für aktuelle und neue Zielorganismen nicht immer gegeben

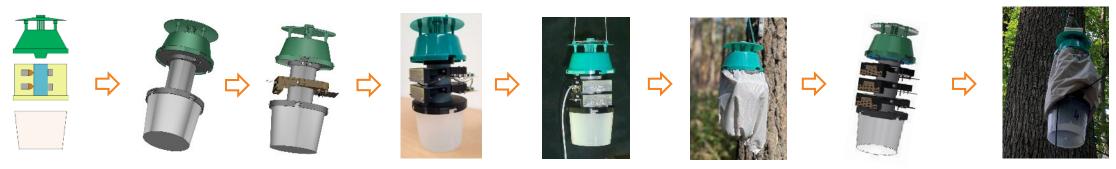
Fänge detektieren & zählen

Vergleich verschiedener technischer Ansätze

• Lichtschranken als erfolgversprechendste Option (Preis, Leistung)

Fänge detektieren & zählen

Vergleich verschiedener technischer Ansätze


• Lichtschranken als erfolgversprechendste Option (Preis, Leistung)

Prototyping des Gehäuses und Aufbau erster Muster

• Aufbau: Fallenzugang mit Trichter und Pheromonhalter, Mittelteil mit Röhre und Sensoren, Fangbehälter

Versuchsmusterbau mit 2-Lichtschrankenebenen und Muster mit 3-Lichtschrankenebenen als Weiterentwicklung zur Erhöhung der Zählsicherheit, jedoch bei höherer Leistungsaufnahme und höherem Preis

Semifreilandtests, Freilandtestes

Energieversorgung

Wichtigste Anforderung -> Autarker Betrieb der Falle über den Fangzeitraum

Feldtests zur Abschätzung bisher unbekannter Größen

 Erwartbare solare Energieerträge im Wald (Verschattungseffekte) und Energiebedarf (Leistungsaufnahme) der Falle über den Fangzeitraum

Vergleich von Versorgungsmöglichkeiten

	Nur LiFePo4-Akku (120 Ah)	LiFePo4-Akku (3 Ah) und 30 W Solarpanel				
Gewicht	14 kg	0,38 kg				
Маßе	33x17x21 cm²	10x7x4 cm²				
Preis	Über 350 €	45 € + (ca. 60 € Solar)				

Steuerung der Falle und Datenübertragung

Herzstück der Falle – die Steuerung

- **Anfangsidee:** Einsatz eines Raspberry Pi (Einplatinencomputer)
- **Erkenntnisse**: Leistungsaufnahme/Energiebedarf zu hoch.
- Lösung: Entwicklung bedarfsangepasster Platine (energiesparend)

Datenspeicherung und -übertragung

- Lösungen für den Datenaustausch im Nahbereich konzipiert und umgesetzt
- Konzeptionelle Ansätze zur **Datenfernübertragung** hintenan gestellt:
 - -> aktuell widersprüchliche Aussagen zum Bedarf (Aufwand/Kosten, Verfügbarkeit, Nutzen)
 - -> jedoch ist eine Fernabfrage zur Funktionsüberwachung der Falle gewünscht

Fangprotokoll Zusammenfassung

Aktualität des Protokolls: 13.11.2023 10:24:26

Laufzeit der Falle: 005 d 23 h 56 min 57 s

Zeittoleranz Events: 2 Sek

Lichtschrankenevents: 134

Anzahl Fänge: 9

Was, wenn die Falle voll ist?

Verschiedene konzeptionelle Ansätze zum "Abtöten der Fänge" erarbeitet und untersucht.

Einsatz von Verfahren mit Laser oder Strom/ Elektro mussten verworfen werden. u.a. aufgrund der Einsatzumgebung (Brandgefährdung im Wald) oder sie waren aus biologischen/ethischen Gründen nicht tragbar

Verschiedene Ansätze **mechanischer Verfahren** diskutiert ...

Zu beachten und viele offene Fragen: ... Falterverhalten, Risiken für Nützlinge, Gefährdungspotenziale durch/bei autarkem Einsatz im Wald, Verunreinigungen bzw. Störungen der Mechanik, u.a.m.

Komponente zum "Leeren der Falle" konzipiert und Funktionsmuster entworfen.

Feldversuche und Ergebnisse

Übersicht über alle Versuche (Anzahl der Standorte X eingesetzter Versuchsmuster)

2022:

3 Freilandversuche: Forleule (2x3), Nonne (3x3), Frostspanner (3x3)

1 Semifreilandversuch: **Schwammspinner** (3x3)

2023:

3 Freilandversuche: Frostspanner (3x3), Breitflügelspanner (3x3), Schwammspinner (3x3)

1 Semifreilandversuch: **Schwammspinner**

2024

2 Freilandversuche: **Breitflügelspanner** (2x2), **Forleule** (2x2)

geplant: Nonne (2x2), Schwammspinner (2x2)

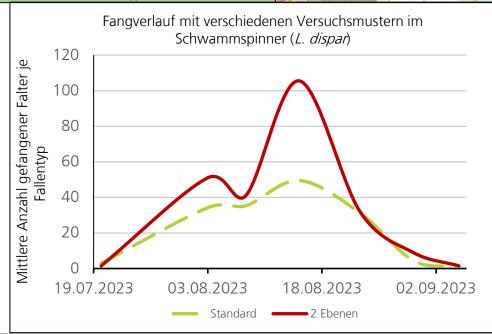
Feldversuche

Auszug: Ergebnisse des Schwammspinnerversuchs: FA Wetzlar, Revier Solms, 2023

Versuchsaufbau und -umfang

Drei Fallenvarianten:

Standardfalle Versuchsmuster mit 2 Lichtschrankenebenen Versuchsmuster mit 3 Lichtschrankenebenen


Zuzüglich:

Versuchsmuster mit Ködermagazin á 4 Ködern vierwöchiges Köderwechselintervall

Ergebnis Im Mittel mehr Fänge in Versuchsmustern durch gleichbleibenden Abgabeverlauf des Pheromons

Erfolgreicher Versuch über 3 Monate!

Feldversuche

Nächste Schritte ...

Abschließender Feldversuch - Langzeittest

- Juli-August 2024: Freilandversuch Nonne (*L. monacha*) Forstamt Nordöstliche Altmark, Revier Bretsch zwei voll-integrierte Versuchsmuster
- Juli-September 2024: Freilandversuch Schwammspinner (*L. dispar*) Forstamt Wetzlar, Revier Solms zwei voll-integrierte Versuchsmuster

Versuchsdurchführung

Projektalltag: (ungeplante) Herausforderungen und Erfolgsfaktoren

... Witterungs- und Umwelteinflüsse

Unwetter und Wind reißen Fallen herunter. Regen und Wasser dringen in Batteriekästen ein. Falterzahlen und Fangereignisse sind auf Testflächen gering. Sonne scheint nicht an Tagen des Solarversuchs. u.v.a.m.

... Faktor "Mensch" und Sonstiges

Defekte an den Fallen durch Herunterfallen oder Absturz. Defekte an den Fallen durch "Krafteinsatz" bei klemmenden Teilen. Defekte SD-Karten Corona und Kriegsereignisse …

... Wichtigster Erfolgsfaktor im Projekt:

Gute, fachlich-sachliche interdisziplinäre Zusammenarbeit sowie kontinuierliche und offene Kommunikation der beteiligten Partner

Fazit

Pheromonfalle für Schadschmetterlinge

Erfolgreicher Aufbau und Test der integrierten Versuchsmuster

- Fangzahlen werden bislang mit vergleichbarem Ergebnis wie bei manueller Auszählung ermittelt.
- Der 2-Ebenen-Zählaufbau bzgl. des Zählergebnisses ist ausreichend.
- Keine Störungen der Zählungen durch Beifänge, Beifänge werden i.d.R. nicht gezählt.
- Energieversorgung über den Überwachungszeitraum autark.
- Modularer Aufbau erlaubt nutzerspezifische Auswahl der Komponenten.

Fazit

DiMoTrap - Pheromonfalle für Schadschmetterlinge

Anwendungsbereich

- Einsatz zur **laufenden Überwachung** der Populationen forstschädlicher Schmetterlingsarten, **nicht jedoch zur Bekämpfung im Pflanzenschutz** vorgesehen.
- Beitrag zum Erhalt produktiver Wälder und zur Sicherung der Holzbereitstellung.

Vorteile

- Aufwand reduzieren und Kosten senken.
- Datenaktualität verbessern und Datenqualität erhöhen.
- Flächenabdeckung (im Monitoring) erhöhen und Schäden reduzieren.
- Ökologische Verträglichkeit durch Reduktion der Beifänge verbessern.

Ausblick

Fortsetzung der Arbeiten und Vorbereitung der Markteinführung

Aktuell:

- Interessenten in verschiedenen Forstverwaltungen
- Recherche möglicher Hersteller, Vertriebspartner, Investoren und Förderer
- Suche und Gewinnung von Pilotierungspartnern (Forstbetriebe bzw. Landesbetriebe für Praxistests)

Nächste Schritte:

- Prototypentwicklung
- Prüfung der Notwendigkeit und Akzeptanz von Datenfernübertragungsansätzen

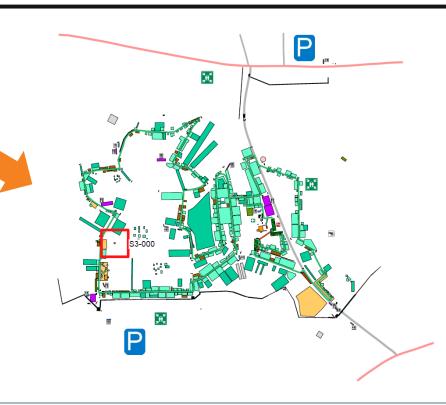
Parallel:

• Wissenschaftliche Beantwortung offener Fragen u.a. zu:

Materialien, Farbgebung – Ausgestaltung von Gehäuse und Design Pheromonen - Weiterentwicklung der Ansätze zur Pheromonabgabe

Weitere Informationen

KWF-Tagung


Präsentation des aktuellen Entwicklungsstands

- am Stand der NW-FVA -> S3-000
 - -> **DiMoTrap** und Infos zum Projekt
- sowie am Exkursions-Punkt 4.2.
 - -> Infos zum Projekt

KWF-Tagung 2024

Übersichtskarte S3-000

Vielen Dank für Ihre Aufmerksamkeit

