

Institut für Baustoffe, Massivbau und Brandschutz

Libo Yan – Fraunhofer WKI & iBMB TU Braunschweig

Plant-based Natural Fibre Reinforced Polymer Composites in Construction: Properties, Application and Challenge

FNR Online Seminar: Bioverbundwerkstoffe — Leichte, innovative Baustoffe, 22.06.2022

Fachagentur Nachwachsende Rohstoffe e. V. (Agency for Renewable Resources)

Gefördert durch:

Bundesministerium für Ernährung und Landwirtschaft

Agenda

- Introduction of Plant-based Natural Fibre Reinforced Polymer (NFRP) Composites
- Properties of Flax Fibre, Yarn, Fabric and FRP Composites
- Potential Application of Flax FRP Composites in Construction
- Challenge and Outlook

Fachagentur Nachwachsende Rohstoffe e.V.

Fachagentur Nachwachsende Rohstoffe e. V. (Agency for Renewable Resources)

Gefördert durch:

Bundesministerium für Ernährung und Landwirtschaft

Introduction of Plant-based Natural Fibre Reinforced Polymer (NFRP) Composites

Fachagentur Nachwachsende Rohstoffe e.V.

Fachagentur Nachwachsende Rohstoffe e. V. (Agency for Renewable Resources)

Gefördert durch:

Bundesministerium für Ernährung und Landwirtschaft

Introduction of Plant-based Natural Fibre Reinforced Polymer Composites

Classification of fibre materials and polymer matrix

Classification of polymer matrix based on thermal behavior

Thermoplastics

 \rightarrow design flexibility, ease of moulding but high temperature processing (e.g. polypropylene)

Thermosets (for civil engineering application)

 \rightarrow Better mechanical properties and thermal stability, room temperature processing (e.g. epoxy)

Classification of natural fibres based on origin

- Plant-based natural fibres (e.g. flax)
- Animal-based natural fibres (e.g. silk)
- Mineral-based natural fibres (e.g. basalt)

Jawaid and Abdul Khalil (2011) Carbonhydr. Polym. 86: 1-18

Introduction of Plant-based Natural Fibre Reinforced Polymer Composites

Why are plant-based natural fibres?

- From renewable and agricultural waste resources \rightarrow support of circular and bio-economy
- Potential to reduce GHG emissions (carbon neutral/low carbon impact)
- Often low toxicity and high bio-degradability
- Less resource-intensive production (water, energy, waste)
- Readily available worldwide
- Non-abrasive, lighter and cheap in comparison with glass fibres or other synthetic fibres
- Specific tensile properties are comparable to those of glass fibres

Introduction of Plant-based Natural Fibre Reinforced Polymer Composites

Why are flax fibres?

Fibre type	Relative density (g/cm ³)	Tensile strength (MPa)	Elastic modulus (GPa)	Specific modulus (GPa \times cm ³ /g)	Elongation at failure (%)
Abaca	1.5	400-980	6.2-20	9	1.0-10
Alfa	0.89	35	22	25	5.8
Bagasse	1.25	222-290	17-27.1	18	1.1
Bamboo	0.6-1.1	140-800	11-32	25	2.5-3.7
Banana	1.35	500	12	9	1.5–9
Coir	1.15-1.46	95-230	2.8-6	4	15-51.4
Cotton	1.5-1.6	287-800	5.5-12.6	6	3-10
Curaua	1.4	87-1150	11.8-96	39	1.3-4.9
Flax	1.4–1.5	343-2000	27.6-103	45	1.2-3.3
Hemp	1.4-1.5	270-900	23.5-90	40	1-3.5
Henequen	1.2	430-570	10.1-16.3	11	3.7-5.9
Isora	1.2-1.3	500-600	_	-	5-6
Jute	1.3-1.49	320-800	30	30	1-1.8
Kenaf	1.4	223-930	14.5-53	24	1.5-2.7
Piassava	1.4	134-143	1.07-4.59	2	7.8-21.9
Palf	0.8-1.6	180-1627	1.44-82.5	35	1.6-14.5
Ramie	1.0-1.55	400-1000	24.5-128	60	1.2-4.0
Sisal	1.33-1.5	363-700	9.0-38	17	2.0-7.0
Aramid	1.4	3000-3150	63-67	46.4	3.3-3.7
Carbon	1.4	4000	200-240	157	1.4-1.8
E-glass	2.5	1000-3500	70–76	29	0.5
S-glass	2.5	4570	86	34.4	2.8

Yan et al. (2014) Composites Part B 56: 296-317

Fachagentur Nachwachsende Rohstoffe e.V.

Fachagentur Nachwachsende Rohstoffe e. V. (Agency for Renewable Resources)

Gefördert durch:

Bundesministerium für Ernährung und Landwirtschaft

Tensile properties of single flax fibre

Material: Single/technical flax fibres extracted from the yarn of uni-directional flax fabric

Length of 20 mm tested @ strain rate 2 mm/min

Strain (%)

Tensile strength (MPa)		Young´s modulus (<u>GPa</u>)		Strain to failure (%)		
Average ± SD <u>C.o.V</u>		Average ± SD	<u>C.o.V</u>	Average ± SD	<u>C.o.V</u>	
850 ± 280 33%		55 ± 9	16%	1.99 ± 0.48	24%	
1012 ± 380	38%	62 ± 19	31%	1.94 ± 0.42	22%	
1020 ± 530 52%		63 ± 21	33%	2 ± 0.87	42%	

Tensile properties of single flax fibres show high variation

C.o.V: Coefficient of Variation

Tensile properties of single-strand flax yarn

Material: Twisted flax yarn extracted from unidirectional, non-crimp fabric Yarn length of 250 mm

Flax yarn under light microscope

Maximum stress (MPa)					
Average	SD	CoV (%)			
599	78	13			

Modulus of Elasticity MoE (GPa)						
Average	SD	CoV (%)				
19.8	2.2	11				

SD: Standard deviation

Tensile properties of flax fabric (unidirectional)

Material: Non-crimp unidirectional flax fabric 300gsm_ 105Tex → 30 yarns per cm width. Free fabric length: 250 mm, Test speed: 1%/min and 10%/min

Strain rate (%/min)	1%/min (n =7)	10%/min (n=5)
MoE (GPa)	9.4 ± 0.8	8.0 ± 0.5
CoV (%)	8.5	6.0
Fmax (MPa)	211 ± 10	221 ± 7
CoV (%)	4.6	3.2
Strain at Fmax (%)	2.6 ± 0.3	3.1 ± 0.2
CoV (%)	13	5,9

Comparison of single fibre, yarn and fabric in tensile properties

Fibre: 1000 MPa and 60 GPa (CoV: 16%-52%)

Tensile strength (MPa)		Young´s moo (GPa)	dulus	Strain to failure (%)		
Average ± SD	<u>C.o.V</u>	Average ± SD C.o.V		Average ± SD	C.o.V	
850 ± 280	33%	55 ± 9	16%	1.99 ± 0.48	24%	
1012 ± 380	38%	62 ± 19	31%	1.94 ± 0.42	22%	
1020 ± 530	52%	63 ± 21	33%	2 ± 0.87	42%	

Fabric: 210-220 MPa and 8.0-9.4 GPa (CoV: 3.2%-8.5%)

Strain rate (%/min)	1%/min (n =7)	10%/min (n=5)
MoE (GPa)	9.4 ± 0.8	8.0 ± 0.5
CoV (%)	8.5	6.0
Fmax (MPa)	211 ± 10	221 ± 7
CoV (%)	4.6	3.2

Yarn: 600 MPa and 20 GPa (CoV: 11%-13%)

Maximum stress (MPa)						
Average	SD	CoV (%)				
599	78 13					
Modulus of Elasticity MoE (GPa)						
Modulus of Elas	sticity MoE	(GPa)				
Modulus of Elas Average	sticity MoE SD	(GPa) CoV (%)				

- From fibre to yarn and to fabric, tensile strength and tensile modulus reduce remarkably
- From fibre to yarn and to fabric, the variation in tensile strength and modulus also reduce remarkably

Tensile properties of unidirectional flax fabric/epoxy composites

Fachagentur Nachwachsende Rohstoffe e.V.

Fachagentur Nachwachsende Rohstoffe e. V. (Agency for Renewable Resources)

Gefördert durch:

Bundesministerium für Ernährung und Landwirtschaft

Plain concrete (PC) and CFRC cores after removed FFRP tubes

Coir fibre bridging: reduce concrete cracks & modify failure concrete to be ductile

As confining materials of normal aggregate concrete

To simulate a bridge pier made of FFRP-CFRC column

© Fraunhofer WKI | Libo Yan

Imported earthquake ground motions

As confining material of recycled aggregate concrete (RAC)

Recycled aggregate mix

FFRP tubes: large (300 x 600), medium (150 x 300) and small (75 x 150): unit of mm

FFRP-RAC with RAC strength of 32.8 MPa

Failure mode: (a) FFRP-RAC and (b) crushed RAC core after removed FFRP tube

© Fraunhofer WKI | Libo Yan

(2) As external strengthening material of reinforced concrete structures

As external strengthening material of reinforced concrete structures

In flax FRP-strengthend RC beams, no delamination of FFRP plates from concrete was observed, showing a good compatibility between RC and the FFRP, and full use of FFRP strength and stiffness.

© Fraunhofer WKI | Libo Yan

(3) As internal reinforcement of concrete – Textile reinforced mortar and recycled aggregate concrete

Epoxy coated flax yarn mesh: large and small mesh size

Displacement (mm) Pull-out load vs. displacement curve of FFRPreinforced RAC

Normalized stress-deflection curve (by longitudinal fibre volume fraction) of FFRP reinforced mortar

As internal reinforcement of concrete – Textile reinforced mortar and recycled aggregate concrete FlaXship at 16th German Concrete Canoe Competition (2017)

© iBMB-TU Braunschweig

Institut für Baustoffe, Massivbau und Brandschutz

FlaXship developed by civil engineering students @ iBMB, TU Braunschweig

(4) As external strengthening material of timber as hybrid timber system

(5) As skin material with light core for sandwich structures

Extruded polystyrene (XPS) foam core

Balsa wood core

Flax fabric skin and wood core

Resin infusion process

Indentation failure: 4-layer FFRP (top) and 2-layer GFRP (bottom) skinned 80 mm XPS panel

© Fraunhofer WKI | Libo Yan

Pure core failure: vertical core break under the application point of the load. The crack goes from the bottom until the top skin layer

Challenge and Outlook

Fachagentur Nachwachsende Rohstoffe e.V.

Fachagentur Nachwachsende Rohstoffe e. V. (Agency for Renewable Resources) Gefördert durch:

Bundesministerium für Ernährung und Landwirtschaft

Challenge

Challenge of using plant-based natural FRP composites in construction

Hard to standardize natural fibres with stablized properties

Large variability in properties among various plant-based natural fibres

Fibre type	Relative density (g/cm ³)	Tensile strength (MPa)	Elastic modulus (GPa)	Specific modulus (GPa \times cm ³ /g)	Elongation at failure (%)
Abaca	1.5	400-980	6.2-20	9	1.0-10
Alfa	0.89	35	22	25	5.8
Bagasse	1.25	222-290	17-27.1	18	1.1
Bamboo	0.6-1.1	140-800	11-32	25	2.5-3.7
Banana	1.35	500	12	9	1.5-9
Coir	1.15-1.46	95-230	2.8-6	4	15-51.4
Cotton	1.5-1.6	287-800	5.5-12.6	6	3-10
Curaua	1.4	87-1150	11.8-96	39	1.3-4.9
Flax	1.4-1.5	343-2000	27.6-103	45	1.2-3.3
Hemp	1.4-1.5	270-900	23.5-90	40	1-3.5
Henequen	1.2	430-570	10.1-16.3	11	3.7-5.9
Isora	1.2-1.3	500-600	-	-	5-6
Jute	1.3-1.49	320-800	30	30	1-1.8
Kenaf	1.4	223-930	14.5-53	24	1.5-2.7
Piassava	1.4	134–143	1.07-4.59	2	7.8-21.9
Palf	0.8-1.6	180-1627	1.44-82.5	35	1.6-14.5
Ramie	1.0-1.55	400-1000	24.5-128	60	1.2-4.0
Sisal	1.33-1.5	363-700	9.0–38	17	2.0-7.0
Aramid	1.4	3000-3150	63-67	46.4	3.3–3.7
Carbon	1.4	4000	200-240	157	1.4-1.8
E-glass	2.5	1000-3500	70–76	29	0.5
S-glass	2.5	4570	86	34.4	2.8

Challenge

Challenge of using plant-based natural FRP composites in construction

Large variability in physical and mechanical properties of the same NF

Defect: Kink band

Flax fibres in a fibre bundle with different cross shapes

Doctoral work: S. Aldroubi

Non-continuous diameters along a flax fibre

SEM of glass fibres

SEM of cross-section of a glass fibre

70°C+ water

Challenge

460 440

420

400

380 360

340

320

300 280

260

240 220

200

180

Tensile strength (MPa)

70°C+ water

Lack of long-term durability database under aggressive environments

Challenge of using plant-based natural FRP composites in construction

and based hatarar nar composites in construction

ANOVA: At 0.05 level

Outlook of using plant-based natural FRP composites

• A great market potential in construction, automotive and sport

Bioverbundwerkstoffe – Markt

Doctoral work: C. Pöhler

For automotive engineering – Bio-concept car

© Fraunhofer WKI I Federico Böhm

© Fraunhofer WKI | Christoph Habermann

At Fraunhofer WKI, a vehicle door with a biogenic content of 85 percent is being developed. For this, natural fibers, biobased resin/hardener mixtures and biobased paint systems are being utilized.

For automotive engineering - tubular structures for energy absorption

WKI

For automotive engineering - tubular structures for energy absorption

© Fraunhofer WKI | Libo Yan

experimental and (b) simulation

With the support of FNR (Nachwuchsgruppe, FKZ: 22011617, 01.12.2018 – 30.11.2023), our Junior Research Group also workes on other sustainable building materials. For more details, please refer to

https://www.wki.fraunhofer.de/en/departments/zeluba/profile/bmel-fnr-juniorresearch-group.html

Textile weave machine at Fraunhofer WKI

UFNR

Fachagentur Nachwachsende Rohstoffe e.V.

Fachagentur Nachwachsende Rohstoffe e. V. (Agency for Renewable Resources) Gefördert durch:

*

Bundesministerium für Ernährung und Landwirtschaft

Thank you for your attention

Libo Yan

Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut WKI Zentrum für leichte und umweltgerechte Bauten ZELUBA® Postadresse: Bienroder Weg 54 E, 38108 Braunschweig Besucheradresse: Beethovenstraße 51 F, 38106 Braunschweig Deutschland / Germany Tel.: +49 531 / 120496-14 E-Mail: libo.yan@wki.fraunhofer.de

Technische Universität Braunschweig Institut für Baustoffe, Massivbau und Brandschutz (iBMB) Fachgebiet Organische Baustoffe und Holzwerkstoffe Hopfengarten 20 38102 Braunschweig Deutschland / Germany Telefon: + 49 531-22077-25 Telefax: + 49 531-22077-44 E-Mail: I.yan@tu-braunschweig.de