

# PolyBioFe: Entwicklung biobasierter Verdickersysteme zur Herstellung von Schmierfetten

Schmierstofftagung, 21.06.2023

Mohammad Vafaei RWTH Aachen, MSE – Institut für Maschinenelemente und Systementwicklung











- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- 4 Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung









- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- 4 Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung







#### **Einleitung und Motivation**

## Stand der Forschung und Problemstellung



#### Aktuelle Situation

- Die negativen Einflüsse petrochemischen Materialien auf die Umwelt sind weitgehend bekannt
- Die Herstellung von Schmierstoffen auf der Basis nachwachsender Rohstoffe reduziert den Einsatz petrochemischer Materialien

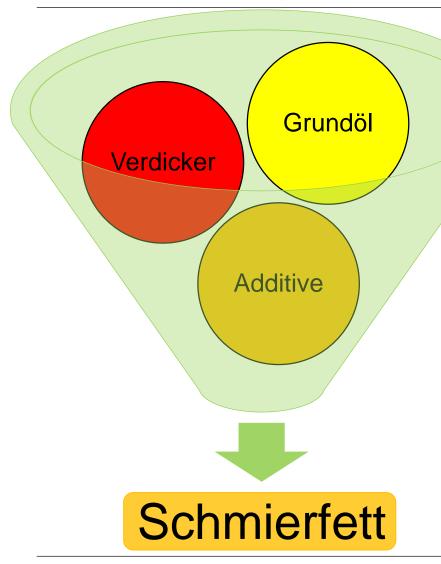
#### Fettschmierung in Wälzlagern

- Etwa 90 % der Wälzlager werden mit Schmierfetten geschmiert, die aus petrochemischen Stoffen hergestellt werden
- Um ein vollständig biologisch abbaubares Schmierfett zu entwickeln, müssen das Grundöl und das Verdickungssystem zunächst aus erneuerbaren Materialien hergestellt werden
- Verfügbare biobasierte Fette mit nichtpolymeren Verdickern zeigen im Vergleich zu Fetten mit polymeren Verdickern ein schlechtes tribologisches Verhalten










Vafaei

## **Einleitung und Motivation**

## Stand der Forschung





#### Marktübliche Schmierfette

**65 – 95%** 

3 - 30%

0 - 10%

Mineralöl: Synthetisches Öl: naphthenisches Öl Silikone Polyalphaolefine paraffinisches Öl Organohalogene Polyester aromatisches Öl Cycloaliphaten Sila-KW

Zielschmierfette

**Biobasierte Basisöle:** 

Sonnenblumenöl Rapsöl Olivenöl Rizinusöl

Sojabohnenöl

**Verdicker:** 

**Grundöl:** 

Seifen Silika

PTFE Harnstoffe

Bentonite Polyharnstoffe

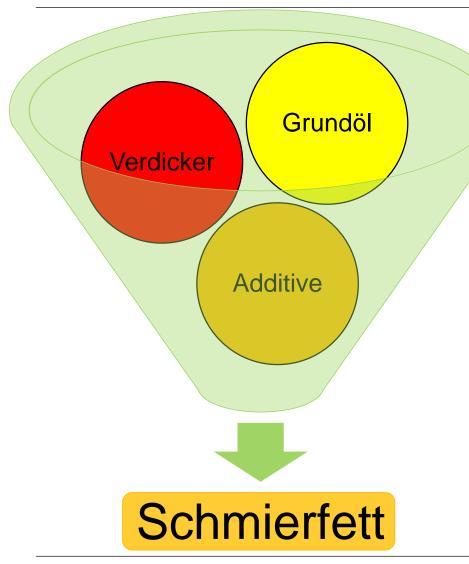
**Biobasierte Verdicker:** 

Polyharnstoffe Polyester

Polyamide

**Additive:** 

Reibungsmodifizierer Antioxidationtien Antioxidationtien Anti-Verschleiß-Additiv Reinigungsmittel Antischaummittel Stockpunktverbesserer Hochdruckadditiv Dispergiermittel Viskositätsindexverbesser Korrosionsinhibitor






## **Einleitung und Motivation**

#### Stand der Forschung





#### Marktübliche Schmierfette

#### Zielschmierfette

#### **Grundöl:**

Mineralöl:
naphthenisches Öl
paraffinisches Öl
aramatisches Öl

Synthetisches Öl:

65 - 95%

3 - 30%

Polyalphaolefine Silikone Organohalogene Polyester Cycloaliphaten Sila-KW

#### **Biobasierte Basisöle:**

Rapsöl Olivenöl Sonnenblumenöl Bizinusöl

Sojabohnenöl

#### Verdicker:

Seifen Silika

PTFE Harnstoffe

Bentonite Polyharnstoffe

#### **Biobasierte Verdicker:**

Polyharnstoffe Polyester

Polyamide

#### Ziele:

- ➤ Herstellung biobasierter Verdickersysteme für Schmierfette
- ➤ Untersuchung der tribologischer Leistung von biobasierten Schmierfetten mit unterschiedlichen Verdickertypen









- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- 4 Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung





#### Projektübersicht

#### Zusammenarbeit



#### Randbedingung

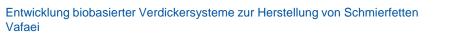
- Entwicklung eines kompletten biobasierten Fettes mit Grundöl und Verdickersystem, das mit klassischen petrochemischen Fetten vergleichbar ist
- Entwicklung und Synthese stabiler biobasierter Polymer-Verdickersysteme

#### AK Weberskirch TU Dortmund

- Entwicklung und Produktion von stabilen biobasierten Verdickersystemen
- Rheologische Tests an Fetten und Nachweis der Stabilität



#### Carl Bechem GmbH


- Schmierstoffcharakterisierung mit Tests am Fette in größere Menge
- Chemische Eigenschaften
- Fettherstellung in größere Menge



#### MSE RWTH Aachen

 Tribologische Untersuchungen an den biobasierten Fetten, wie z. B. Schmierfilmdicken- und Reibungsmessungen mit dem Kugel-Scheibe-Tribometer













- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- 4 Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung







## Entwicklung von biobasierten Verdickersysteme

## Schmierfettentwicklung an der TU Dortmund





Polyharnstoff

| Formulierung<br>des Fetts | NLGI Klasse |
|---------------------------|-------------|
| PDI-BAMF                  | 2           |
| PDI-MDA                   | 2           |
| PDI-PDA                   | 2           |

Polyester

| Formulierung<br>des Fetts | NLGI<br>Klasse |
|---------------------------|----------------|
| DDS-BD                    | 4              |
| DDS-PrD                   | 4              |
| BS-BD                     | 3              |

Polyamide

| Formulierung<br>des Fetts | NLGI klasse |
|---------------------------|-------------|
| AS-MDA                    | 3           |
| DCF-BAMF                  | 3           |

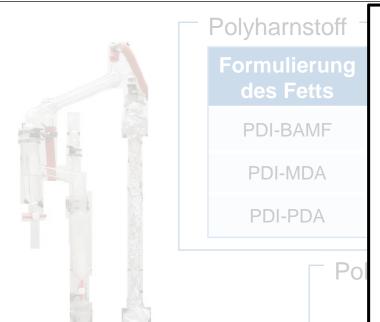
Apparat zur Herstellung von

Zirkulationsapparat für die Herstellung von Polyester in einem Quasi-In-Situ-Polymerisationsverfahren

> 8 Schmierfette mit 3 verschiedenen Verdickersystemen wurden für tribologische Untersuchungen hergestellt

Polyamiden in einer
Polykondensationsreaktion








## Entwicklung von biobasierten Verdickersysteme

## Schmierfettentwicklung an der TU Dortmund





Zirkulationsapparat für die Herstellung von Polyester in einem Quasi-In-Situ-Polymerisationsverfahren

> 8 Schmie für tribolo





Biobasierte, polymere Verdickersysteme zur Herstellung von Schmierfetten für Hochtemperaturund *Fill-For-Life-*Anwendungen

#### Dissertation

Zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

Technische Universität Dortmund

Fakultät für Chemie und Chemische Biologie

Arbeitsgruppe Polymere Hybridsysteme

Vorgelegt von Max Jopen

aus Mönchengladbach

Dortmund, 2022



1

3



Apparat zur Herstellung von Polyamiden in einer Polykondensationsreaktion

wurden





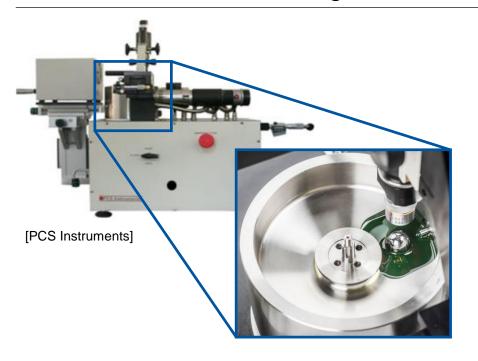




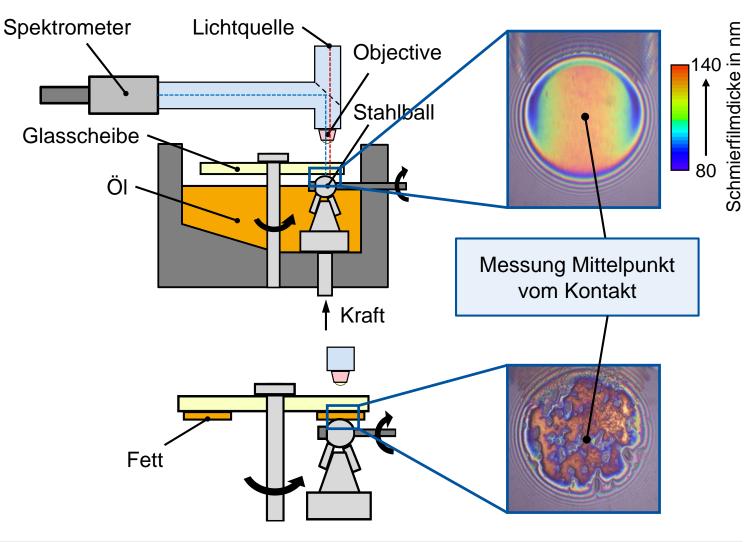


- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- 4 Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung









## Qualifizierung von entwickelten Schmierstoffen auf Kugel-Scheiben-Tribometern

## Schmierfilmdickenmessung

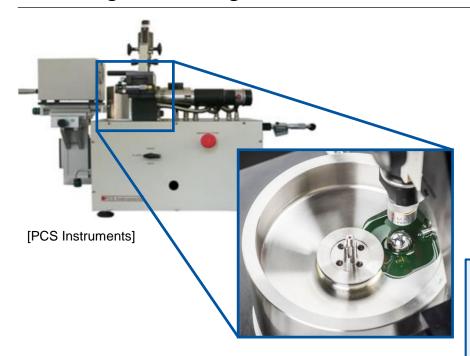




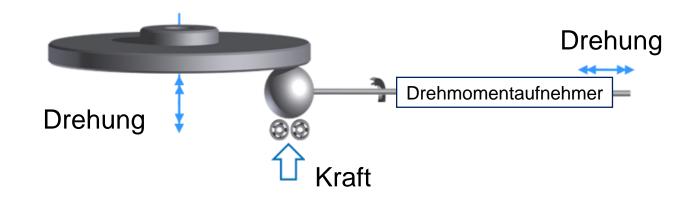
| Druck                  | 180 bis 1100 MPa |
|------------------------|------------------|
| Temperatur             | -15 bis 150 °C   |
| Rollgeschwindigkeit    | 1 bis 4000 mm/s  |
| Slide-Roll-Ratio (SRR) | 0 bis 200 %      |









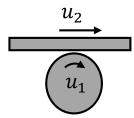


## Qualifizierung von entwickelten Schmierstoffen auf Kugel-Scheiben-Tribometern

#### Reibungsmessung





| Druck                  | 180 bis 1100 MPa |
|------------------------|------------------|
| Temperatur             | -15 bis 150 °C   |
| Rollgeschwindigkeit    | 1 bis 4000 mm/s  |
| Slide-Roll-Ratio (SRR) | 0 bis 200 %      |




- Reibungstest werden mit Stahlkugel und Scheibe durchgeführt
- Rollgeschwindigkeit steigt w\u00e4hrend der Messung

$$u_{Roll} = \frac{(u_1 + u_2)}{2}$$

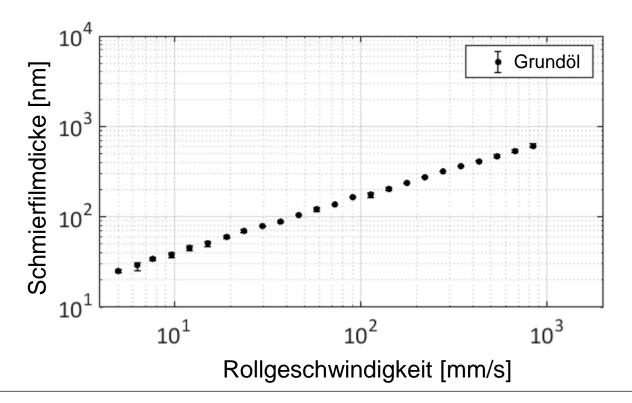
 Gleiteffekte werden durch das Slide-Roll-Ratio (SRR) eingestellt und es ist während der Messungen konstant

$$SRR = \frac{u_{sliding}}{u_{rolling}} = 2 \left| \frac{u_1 - u_2}{u_1 + u_2} \right| \cdot 100\%$$



- $u_1 = u_2$ Rolling, SRR =0
- $u_1 \neq u_2$ Relative Geschwindigkeit, 0<SRR<200%
- $u_1 \ or \ u_2 = 0$ Sliding, SRR=200%







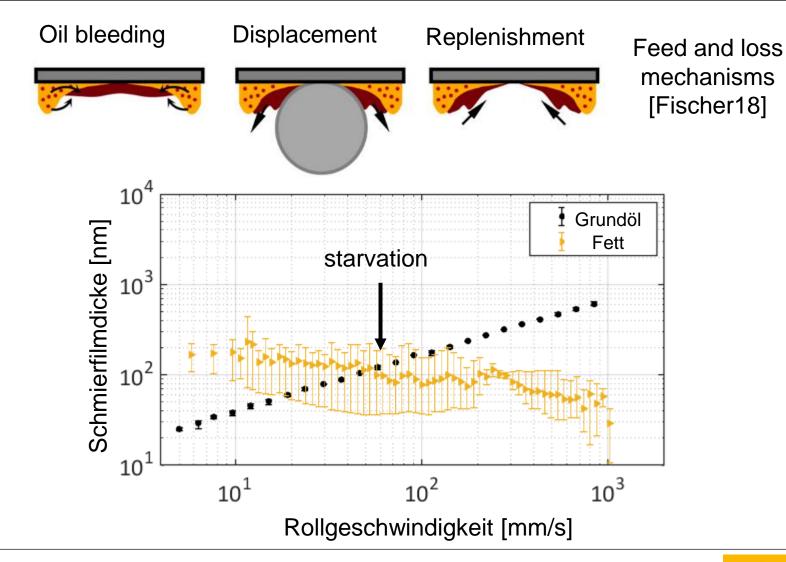

#### Schmierfilmdicke und Auftreten von Starvation im EHD-Kontakt



| Schmierstoffeigenschaften |           |  |
|---------------------------|-----------|--|
| Schmierfett               | -         |  |
| Verdicker                 | -         |  |
| Gründöl                   | Rizinusöl |  |
| Viskosität (40 °C)        | 240 mm²/s |  |
| Betriebsbedingung         |           |  |
| Temperatur                | 40 °C     |  |
| Druck                     | 700 MPa   |  |







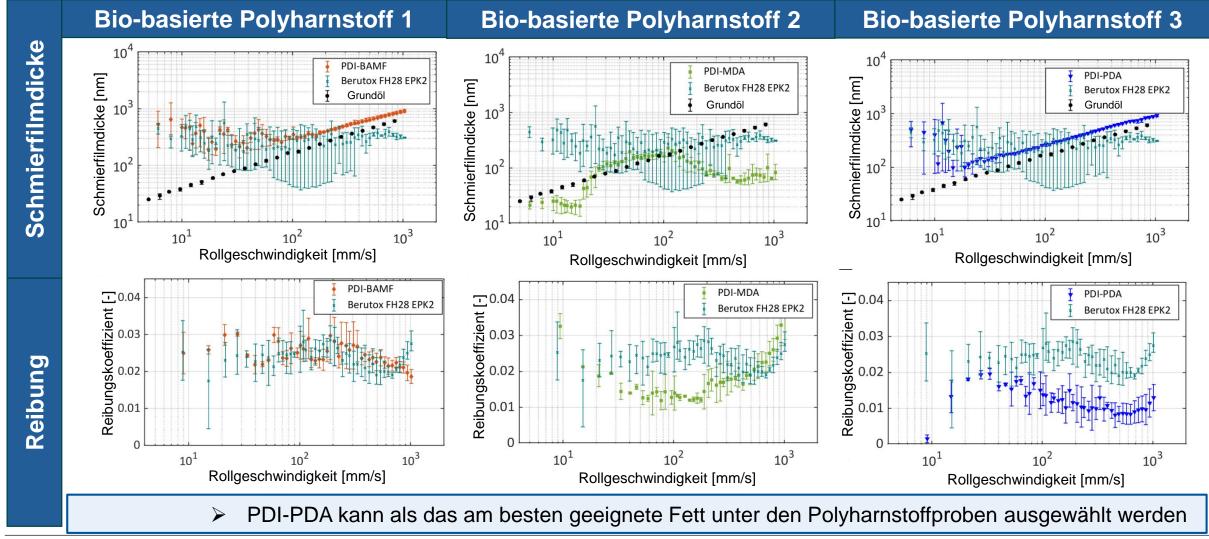



#### Schmierfilmdicke und Auftreten von Starvation im EHD-Kontakt



| Schmierstoffeigenschaften |           |  |
|---------------------------|-----------|--|
| Schmierfett               | DDS-Bd    |  |
| Verdicker                 | Polyester |  |
| Gründöl                   | Rizinusöl |  |
| Viskosität (40 °C)        | 240 mm²/s |  |
| Betriebsbedingung         |           |  |
| Temperatur 40 °C          |           |  |
| Druck                     | 700 MPa   |  |





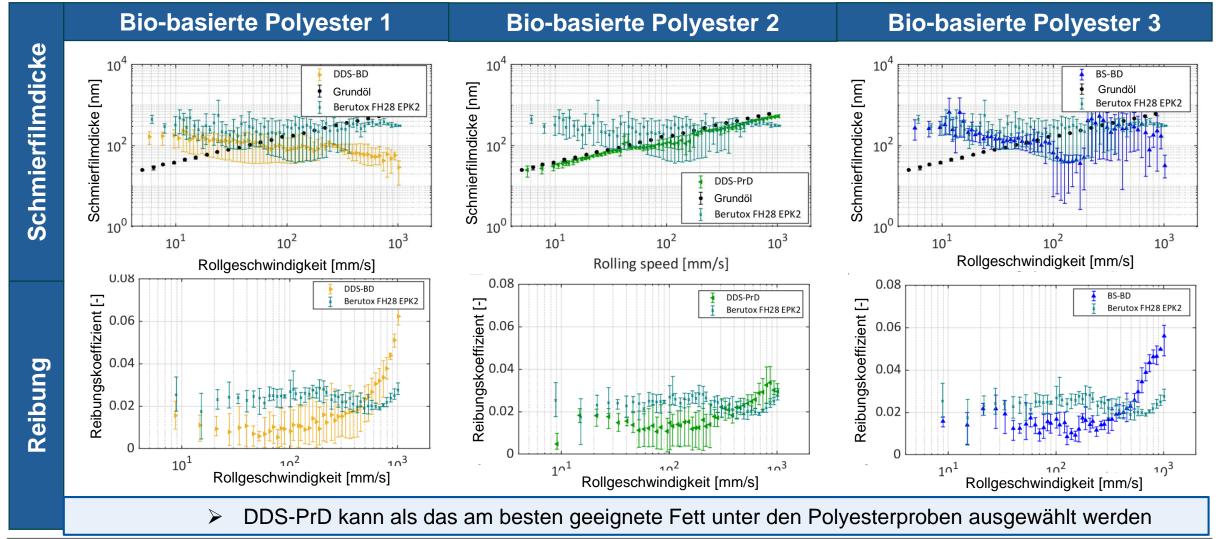





Schmierfilmdicke und Reibungsmessung im EHD-Kontakt (Polyharnstoffe)







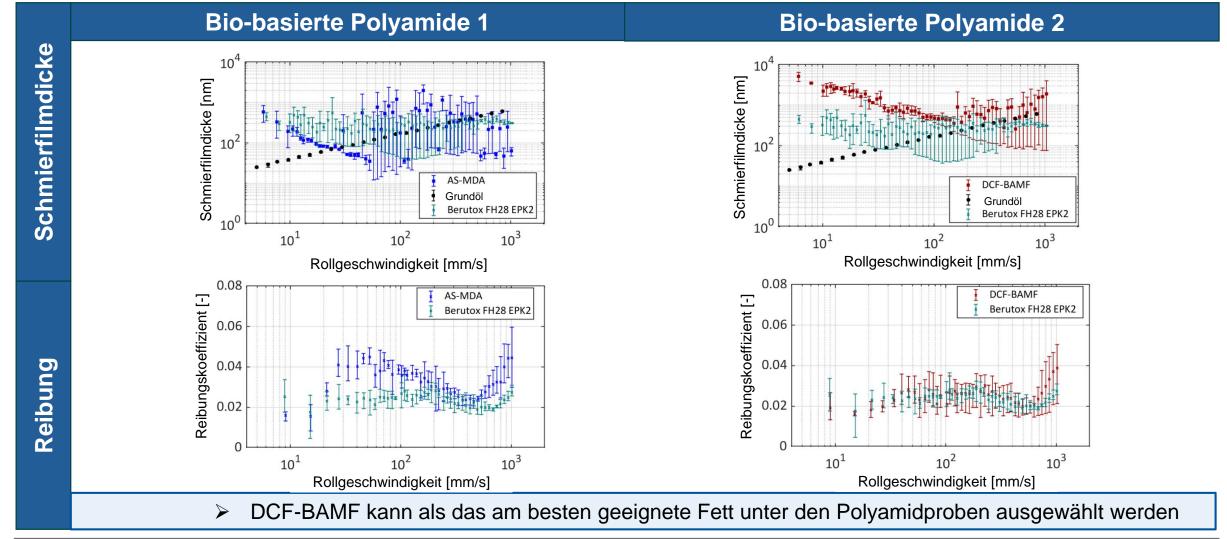





Schmierfilmdicke und Reibungsmessung im EHD-Kontakt (Polyester)







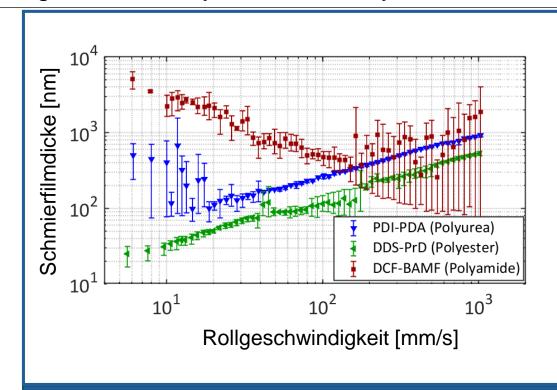


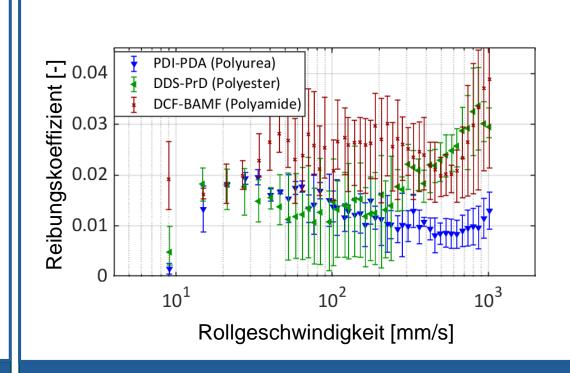



Schmierfilmdicke und Reibungsmessung im EHD-Kontakt (Polyamide)










Vergleich von Polyharnstoff-, Polyester- und Polyamidfetten



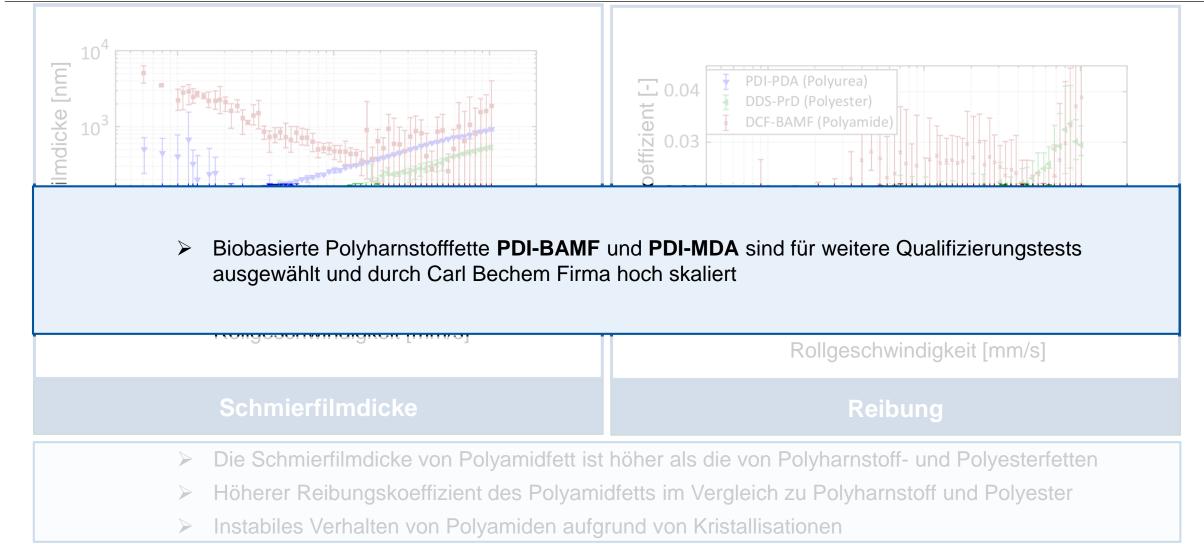




#### **Schmierfilmdicke**

- Die Schmierfilmdicke von Polyamidfett ist höher als die von Polyharnstoff- und Polyesterfetten
- ➤ Höherer Reibungskoeffizient des Polyamidfetts im Vergleich zu Polyharnstoff und Polyester
- Instabiles Verhalten von Polyamiden aufgrund von Kristallisationen






Reibung



Vergleich von Polyharnstoff-, Polyester- und Polyamidfetten



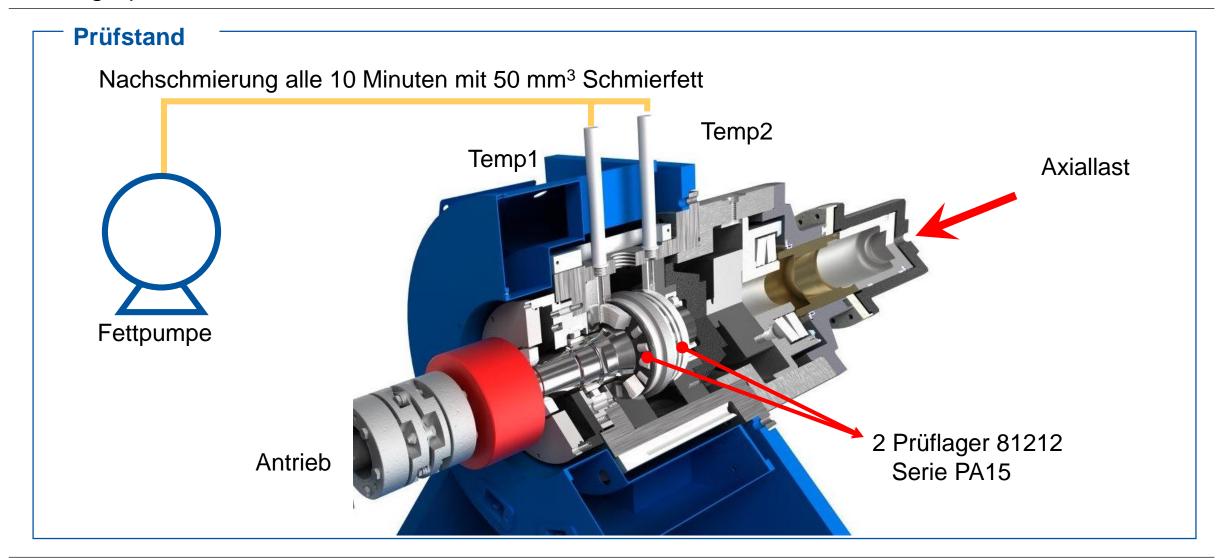











- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung







Axiallagerprüfstand FE8 nach DIN 51819









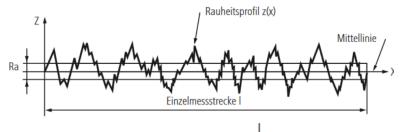
#### Axiallagerprüfstand FE8

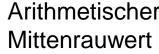


#### Ziel

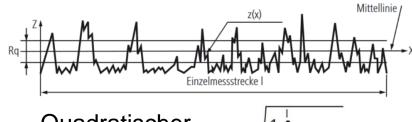
Bestimmung des Verschleißschutzes von Schmierstoffen

#### Verschleißmasse


Messung des Gewichts der Laufbahn und der Wälzkörper vor und nach den Messungen

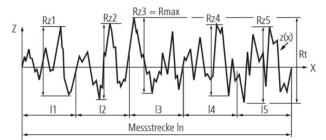



81212 Axialzylinderrollenlagers mit Käfig aus Polyamid PA66 mit 15 Wälzkörpern (WK)


#### **Oberflächenrauheit**

Messung der Rauheit der Laufbahn und der Wälzkörper vor und nach den Messungen (DIN EN ISO 4287)










Quadratischer Mittelrauwert

$$Rq = \sqrt{\frac{1}{I} \int_{0}^{I} z^{2}(x) dx}$$

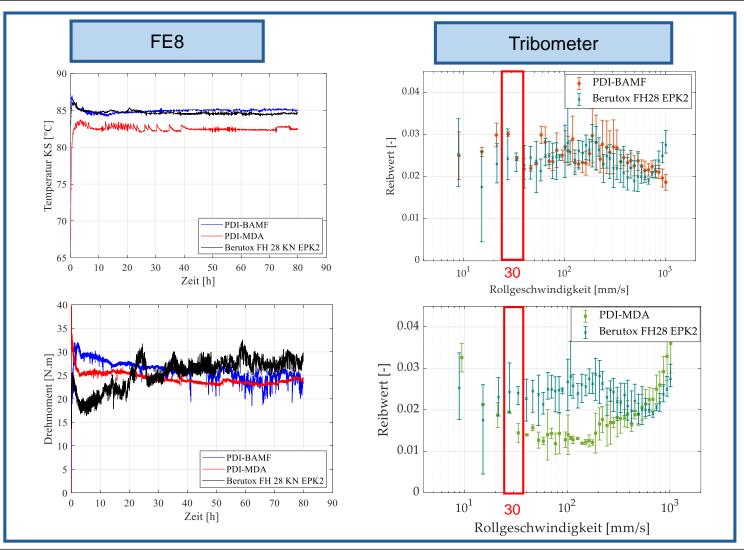


Gemittelte Rautiefe

$$Rz = \frac{1}{n}(Rz1 + Rz2 + ... + Rzn)$$

[Zeiss]








## Axiallagerprüfstand FE8 (Korrelation)



| Korrelation |                                                             |                                                                                               |
|-------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Prüfstand   | FE8                                                         | Tribometer                                                                                    |
| Temperatur  | 80 °C                                                       | 40 °C                                                                                         |
| Druck       | 1900 MPa                                                    | 700 MPa                                                                                       |
| Geschw.     | 30.4 mm/s                                                   | 30 mm/s                                                                                       |
| Kontakt     | Linienkontakt                                               | Punktkontakt                                                                                  |
| Schmierung  | Fettverteilung<br>auf der Scheibe<br>ohne<br>Nachschmierung | Erste Schmierung<br>und<br>Nachschmierung<br>alle 10 Minuten<br>mit 22.5 mm <sup>3</sup> Fett |









## Axiallagerprüfstand FE8 (Gesamtbewertung)



PDI-MDA

| Unterschied | Ra    | Rq    | Rz    |
|-------------|-------|-------|-------|
| WS          | 0.005 | 0.01  | 0.075 |
| GS          | 0     | 0.005 | 0.035 |
| WK          | 0.025 | 0.025 | 0.105 |

| Mittelwert       | Masse<br>[mg] |
|------------------|---------------|
| Lager 1 und 2 WK | 10.3          |

Guter Verschleißschutz

PDI-BAMF

| Unterschied | Ra     | Rq     | Rz     |
|-------------|--------|--------|--------|
| WS          | -0.01  | -0.005 | 0.005  |
| GS          | -0.005 | -0.01  | -0.05  |
| WK          | -0.01  | -0.01  | -0.065 |

| - 4 | A. |
|-----|----|
| /   | 1  |
| _   |    |

| Mittelwert       | Masse<br>[mg] |
|------------------|---------------|
| Lager 1 und 2 WK | 4.8           |

Sehr guter Verschleißschutz



| Mittelwert       | Masse<br>[mg] |  |
|------------------|---------------|--|
| Lager 1 und 2 WK | 0.6           |  |

Sehr guter Verschleißschutz

| Verschleißmasse der<br>Rollen (WK) | Bewertung der<br>Verschleißschutzwirkung |
|------------------------------------|------------------------------------------|
| < 10 mg                            | Sehr guter<br>Verschleißschutz           |
| 10 – 30 mg                         | Guter Verschleißschutz                   |
| 30 – 100 mg                        | Mäßiger Verschleißschutz                 |
| > 100 mg                           | Zu viel Verschleiß                       |

28 KN EPK2

| Unterschied | Ra     | Rq    | Rz     |
|-------------|--------|-------|--------|
| WS          | -0.02  | -0.02 | -0.095 |
| GS          | -0.015 | -0.02 | -0.07  |
| WK          | 0      | 0.005 | 0      |

- Sehr guter Verschleißschutz durch das petrochemische Schmierfett
- vergleichbarer Verschleißschutz des BAMF im Vergleich zum petrochemischen Fett.
- Guter Verschleißschutz von MDA







**Berutox FH** 

Axiallagerprüfstand FE8 (Gesamtbewertung)



PDI-MDA

 Unterschied
 Ra
 Rq
 Rz

 WS
 0.005
 0.01
 0.075

 GS
 0
 0.005
 0.035

| Lager 1 und 2 WK | 10.3 |  |
|------------------|------|--|

Guter Verschleißschutz

| Verschleißmasse der<br>Rollen (WK) | Bewertung der<br>Verschleißschutzwirkung |
|------------------------------------|------------------------------------------|
| < 10 mg                            | Sehr guter<br>Verschleißschutz           |
| 10 – 30 mg                         | Guter Verschleißschutz                   |

#### Zwischenfazit

 Die Fette mit dem besten Verschleißschutz beim FE8 Test k\u00f6nnen wie folgt eingestuft werden: das petrochemische Fett > das biobasierte Fett BAMF > das biobasierte Fett PDA

• Die Ergebnisse des FE8 stimmen mit den Ergebnissen des EHD-Tribometers überein

PDI-BAMF

Berutox FH 28 KN EPK2

| Unterschied |        |       | Rz     |
|-------------|--------|-------|--------|
| WS          | -0.02  | -0.02 | -0.095 |
| GS          | -0.015 | -0.02 | -0.07  |
| WK          |        |       | 0      |

| Lager 1 und 2 WK | 0.6 |
|------------------|-----|

Sehr guter Verschleißschutz

#### OUIIIIIEIIEU

- vergleichbarer Verschleißschutz des BAMF im Vergleich zum petrochemischen Fett.
- Guter Verschleißschutz von MDA



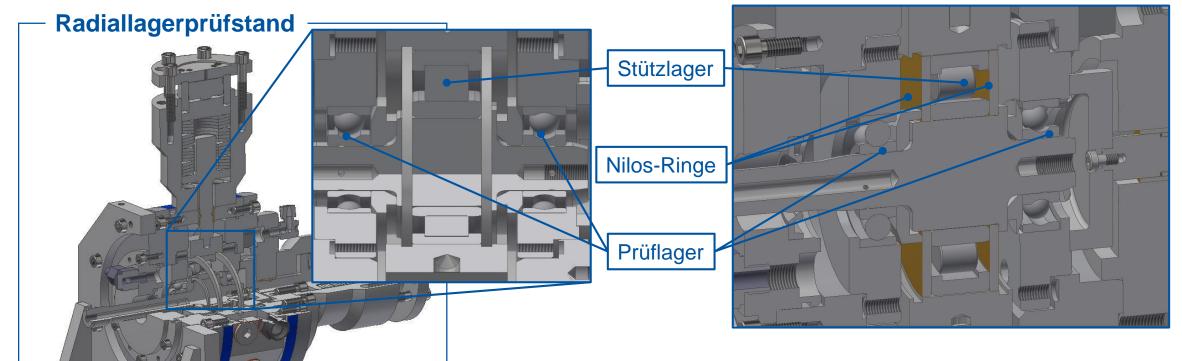




ıtz



- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung








#### Lebensdauerversuche





#### **Umbau des Prüfstandes**

- Umstellung von Öl- auf Fettschmierung
- Prüflager (Rillenkugellager) können abgedichtet eingekauft werden
- Bei Stützlager (Zylinderrollenlager) ist Abdichtung durch Nilos-Ringe (Labyrinthdichtung) erforderlich

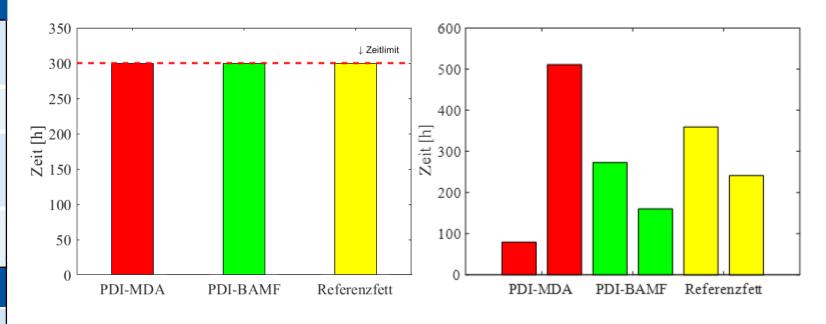






#### Lebensdauertest




Lagertyp: Rillenkugellager 6305

| Fette                           |              |              |                  |
|---------------------------------|--------------|--------------|------------------|
| Fett                            | PDI-<br>MDA  | PDI-<br>BAMF | Berutox<br>(Ref) |
| Gründöl                         | Rizinusöl    | Rizinusöl    | PAO              |
| Gründöl<br>Viskosität<br>(40°C) | 254<br>mm²/s | 254<br>mm²/s | 242,5<br>mm²/s   |
| NLGI<br>Klasse                  | 2            | 2            | 1 – 2            |

# Temperatur 50 °C Radialast 10 kN (2183.6 MPa) Drehzahl 2500 min<sup>-1</sup> (4.07 m/s) Max. Zeit 300 Stunden

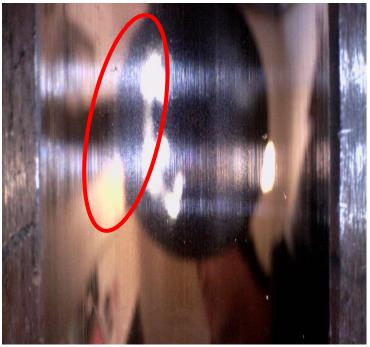
#### Mit Zeitlimit





- ➤ Hohe Streuung in den Ergebnissen der Lebenszeit von Biofette
- ➤ Beide Biofette konnten mindestens einen Test mit 300 Stunden bestehen









Optische Ergebnisse (Lichtmikroskop)









MDA nach 300 Stunden

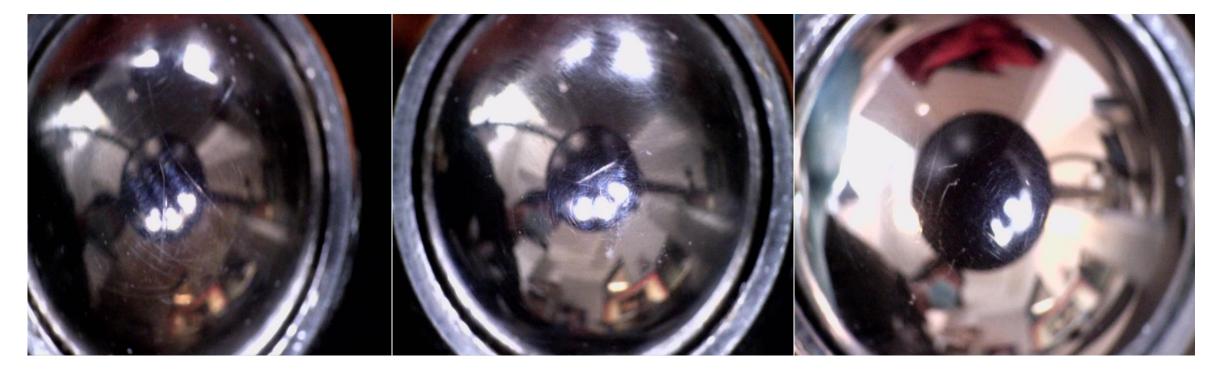
<

BAMF nach 300 Stunden



Referenzfett nach 300 Stunden

Deutlich bessere Qualität der Oberflächen im Innenring des Wälzlagers mit Referenzfett als die biobasierten Fette BAMF und MDA nach 300 Stunden.








Optische Ergebnisse (Lichtmikroskop)





MDA nach 300 Stunden

BAMF nach 300 Stunden

<

Referenzfett nach 300 Stunden

Deutlich bessere Qualität der Oberflächen der Kugeln des Wälzlagers mit dem Referenzfett als die biobasierten Fette BAMF und MDA nach 300 Stunden.









- 1 Einleitung und Problemstellung
- 2 Arbeitspakete und Zusammenarbeit
- 3 Entwicklung von biobasierten Verdickersysteme
- 4 Qualifizierung von entwickelten Schmierstoffen
  - 4.1 Screening Teste am Kugel-Scheiben-Tribometer
  - 4.2 Verschleißteste auf Axiallagerprüfstand FE8
  - 4.3 Lebensdauerteste auf Radiallagerprüfstand
- 5 Zusammenfassung







#### Zusammenfassung



#### Zusammenfassung

- Es wurden biobasierte Verdickersysteme (Polyharnstoffe, Polyester und Polyamide) entwickelt und rheologische Tests an entwickelten biobasierten Fetten mit Rizinusölbasis durchgeführt
- Das tribologische Verhalten der entwickelten biobasierten Fette wurde am Kugel-Scheiben Tribometer, FE8 (Verschleißtest) und Radiallagerprüfstand (Lebensdauertest) ermittelt

#### **Fazit**

- Die Ergebnisse der Screening Versuche auf dem Tribometer stimmen mit den Verschleißtests auf FE8 und den Lebensdauertests auf RLP überein
- Vergleichbares tribologisches Verhalten der biobasierten Fette mit dem petrochemischen Referenzfett

#### Zukünftige Arbeit

- Weitere polymere Strukturen k\u00f6nnen in die Entwicklung der neuen alternativen biobasierten Fette einbezogen werden
- Weitere Langzeitversuche im Lagerprüfstände erforderlich um die Ergebnisse des Projekts statistisch abzusichern







## Projektübersicht Gemeinsame Publikationen



| Autoren                                                                    | Titel                                                                                                                                                          | Jahr | Art             | Ort                                                          |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|--------------------------------------------------------------|
| •                                                                          | Tribological behaviour of lubricating greases composed by different bio-<br>based polymer thickeners                                                           | 2020 | Konferenz       | Gesellschaft für Tribologie (GfT)                            |
| Vafaei, S., Fischer, D., Jopen, M., Jacobs, G., König, F., Weberskirch, R. | Schmierfetten                                                                                                                                                  | 2021 | Konferenz       | Bioschmierstoff-<br>Tagung 2021 FNR                          |
| · ·                                                                        | Investigation of Tribological Behavior of Lubricating Greases Composed of Different Bio-Based Polymer Thickeners.  https://doi.org/10.3390/lubricants9080080.  | 2021 | Fachzeitschrift | Lubricants journal                                           |
| •                                                                          | Polyurea Thickened Lubricating Grease—The Effect of Degree of Polymerization on Rheological and Tribological Properties https://doi.org/10.3390/polym14040795. | 2022 | Fachzeitschrift | Journal of Polymers                                          |
| Vafaei, S., Jopen, M., Jacobs, G., König, F., Weberskirch, R.              | Synthesis and tribological behavior of bio-based lubrication greases with bio-based polyester thickener systems  https://doi.org/10.1016/j.jclepro.2022.132659 | 2022 | Fachzeitschrift | Journal of Cleaner<br>Production                             |
| Vafaei, S., Goeldel, S., Jacobs, G.,<br>König                              | Evaluation of Bio-based Lubricating Greases and PTFE-Lubrication under EHL Conditions                                                                          | 2022 | Konferenz       | TriboUK                                                      |
| Vafaei, S., Jacobs, G., König                                              | Tribological Performance of Lubricating Greases Composed by Different Bio-based Polymer Thickeners under Elastohydrodynamic Lubrication Conditions             | 2022 | Konferenz       | Tribology International<br>Conference,<br>Barcelona, Spanien |
| Vafaei, S., Jacobs, G., König                                              | Tribological Evaluation of Lubricating Greases Composed by Different Biobased Polymer Thickeners                                                               | 2022 | Konferenz       | Arnold Tross Kolloqium,                                      |
|                                                                            |                                                                                                                                                                |      |                 | Hamburg                                                      |









## Vielen Dank für Ihre Aufmerksamkeit!

Mohammad Vafaei

RWTH Aachen, MSE – Institut für Maschinenelemente und Systementwicklung



