Wood fiber as a sustainable peat alternative for reducing risks of hydrophobicity in peatbased growing media.

Jean-Charles MICHEL & Stan DURAND

Hydrophobic zone

Water preferential flow

Workshop_Off the peat path

25 April 2023

Water preferential flows as a consequence of peat hydrophobicity

Issues & Challenges

Peat: Search water retention properties, physical and biological stability

Issues & Challenges

- *Peat:* \Im risk of hydrophobicity during drying
 - ✤ wetting agent or clay addition,
 - ✤ mixes with <u>hydrophilic</u> growing media constituents

- Peat: non-renewable (fossil) resource
 - sustainable (organic) peat alternatives
 - Coir
 - BarksWood fiber
 - Composts

Study materials

Wood fiber (GreenFibre)

- medium 0-4 mm
- Picea
- produced in Germany through extruder

we make it grou

- Dry Bulk Density = 0,08 g/cm³
- Klasmann-Deilmann

White Sphagnum Peat moss

- milled, star screened 0-25 mm
- H3-H5 Von Post index
- extracted in Lithuania
- Dry Bulk Density = 0,11 g/cm³
- Klasmann-Deilmann

3 initial moisture contents tested, expressed by percent weight (MC) and volumetric water content (WC)

		Initial Moisture Content MC by weight (%			
	Dry bulk density	40 %	50 %	60 %	
	8	Initial Volumetric Water Content WC (v/			
100 %Wood fiber	0.08	0.07	0.10	0.15	
60% Wood fiber – 40 % Peat	0.09	0,07	0,11	0,16	
40% Wood fiber – 60% Peat	0.09	0,08	0,11	0,17	
20% Wood fiber – 80% Peat	0.10	0,08	0,11	0,18	
100% White peat	0.11	0.08	0.12	0.19	

Wettability: 2 types of materials & 2 main methods

2 main reference methods ... differing in study-scale, volumes tested, methods of water delivery

Contact angle measurements

Contact angle (°)	Moisture content (by mass)			
	40 %	50 %	60 %	
100% White peat	> 90 (*)	> 90 ^(*)	87,0	
20% Wood fiber <mark>– 80% Peat</mark>	> 90 (*)	89,4	86,9	
40% Wood fiber <mark>– 60% Peat</mark>	89,7	88,5	86	
60% Wood fiber – 40% Peat	89,5	88,1	85,7	
100 %Wood fiber	86.1	85.8	85,5	

(*) no capillary rise for hydrophobic materials: contact angle varies between 90° and 180°

- Peat changes from a hydrophilic (60%) to a hydrophobic (≤50%) character during drying.
- Wood fiber remains hydrophilic, whatever its moisture content.
- Wood fiber addition in peat-based growing media increases its wettability.

Hydration Efficiency tests

	40%	50%	60%		40%	50%	60%
Water content after the 1^{st} irrigation event, WC ₁ (% vol.)	0,51	0,52	0,53	Water content after the 1^{st} irrigation event, WC ₁ (% vol.)	0,11	0,29	0,60
Maximum water retention = Container Capacity, CC (% vol.)	0,58	0,58	0,58	Maximum water retention = Container Capacity, CC (% vol.)	0,62	0,76	0,81
WC ₁ /CC _{MAX}	0,88	0,90	0,91 🖒	WC ₁ /CC _{MAX}	0,14 🔨	0,3 6	0,74

Hydration Efficiency tests

	40 //	50%	0076
Water content after the 1^{st} irrigation event, WC ₁ (% vol.)	0,51	0,52	0,53
Maximum water retention = Container Capacity, CC (% vol.)	0,58	0,58	0,58
WC ₁ /CC _{MAX}	0,88	0,90	0,91 🖒

- Water capture for wood fiber does not depend on initial moisture content: $WC_{40} = WC_{50} = WC_{60}$
- Water retention properties for wood fiber are maintained, whatever the intensity of drying: CC₄₀ = CC₅₀ = CC₆₀
- Wood fiber remains hydrophilic, whatever its moisture content.

Hydration Efficiency tests

- Water capture for peat depends on initial moisture content: WC_x=f (initial moisture content)
- The drier the peat, the more difficult its total rewetting CC_x=f (initial moisture content)
- Peat changes from a hydrophilic to a hydrophobic character during drying

	40%	50%	60%
Water content after the 1^{st} irrigation event, WC ₁ (% vol.)	0,11	0,29	0,60
Maximum water retention (Container Capacity, CC) (% vol.)	0,62	0,76	0,81
WC ₁ /CC _{MAX}	0,14 🔇	0,36	0,74

Influence of wood fiber content on water capture for peat-based mixes

Influence of wood fiber content on water capture for peat-based mixes: comparison with wetting agent

Water capture (% vol.) / Maximum water retention (% vol.)

Main conclusions

• Wood fiber is hydrophilic and can be easily rewetted, whatever its degree of desiccation.

- Wood fiber addition in peat-based mixes increases their ability to rewet (higher water capture) despite a lower water holding capacity.
- Wood fiber addition therefore reduces the risk of hydrophobicity for peat-based growing media.

	Water content after a 1 st irrigation event, WC ₁ (% vol.)	Maximum water retention = Container Capacity, CC (% vol.)
100% White peat	29	76
20% Wood fiber – <mark>80% Peat</mark>	35	74
40% Wood fiber – 60% Peat	38	74
60% Wood fiber – 40% Peat	45	71
100 %Wood fiber	52	58

Initial moisture content = 50% by weight

Wood fiber: Strengths & Weaknesses

- Hydrophilic ⇒ *¬* ability to rewet for peat-based growing media
 - ≈ coco
 - < wetting agent (except in high content)
- Sustainable, highly available, low cost resource
- Complementarity between aeration properties of wood fiber and water retention properties of peat

 % wood fiber in peat-based mixes decreases water holding capacity and easy available water

	Total porosity % vol.	Air filled porosity % vol.	Water holding capacity % vol.	Easy available water % vol.
Peat	93	17	75	30
Wood fiber	92	52	41	12

Optimum (Rivière, 1991) : Air filled porosity > 20% vol. ; Easy available water > 25% vol.

Constituents	201	7	205	0	Increase (vol)
	Millions m ³ .year ⁻¹	Market %	Millions m ³ .year ⁻¹	Market %	
Peat	40	59.3	80	28.3	x 2
Wood fiber	3	4.4	30	10.6	x 10

Wood fiber as a sustainable peat alternative for reducing risks of hydrophobicity in peatbased growing media. Thank you for your attention

lean-Charles MICHEL & Stan DURAND

Hydrophobic zon

Water preferential flow

Workshop Off the peat path

25 April 2023

Water preferential flows as a consequences of peat hydrophobicity