A multi-adaptive framework for the crop choice in paludicultural cropping systems in Italy

Dr. Vittoria Giannini – University of Padova

email: vittoria.giannini@unipd.it

Study area

Massaciuccoli Lake Basin

- Catchment area: 11430 ha
- San Rossore, Migliarino and Massaciuccoli Regional Park
- Peaty soils
- Ramsar site, Nature 2000
- Populated area (47000 inhabitants)
- Conventional agriculture (5151 ha)

Why paludiculture here?

To repair:

- Subsidence (3-4 cm/year)
- Eutrophication of surface- and ground-water (N,P)

Pilot experimental field

NWS : Natural Wetland System

- Re-wetted area
- Spontaneous vegetation

CWS : Constructed Wetland System

- Engineered water flow
- Spontaneous vegetation (helophytes)

PCS : PaludiCulture System

•grass and wood species watered with drainage water in permanent soil saturated conditions

Aims of the research

- Which is the adaptability of the most studied perennial crops under paludicultural conditions?
- What is the possible destination of the harvested biomass?
- Which are the most important criteria for the crop selection in paludiculture?

Paludicultural field set-up

TESTED PLANT SPECIES:

- Arundo donax L. (Aru)
- *Miscanthus* x *giganteus* Greef et Deuter (Mis)
- *Phragmites australis* L. (Phr)
- *Populus* x *canadensis* Moench. var 'Oudemberg' (Pop)
- Salix alba L. var 'Dimitrios' (Sal)

CONTROL PLANT SPECIES:

• Zea mays L.

Paludicultural field set-up

PERENNIAL RHIZOMATOUS GRASSES (PRG)

- Arundo donax : local ecotype, transplanted in June (1.0 x 0.5 m)
- *Miscanthus x giganteus* : rhizomes plantation in June (1.0 x 0.5 m)
- *Phragmites australis* : rhizomes plantation in June (1.0 x 0.5 m)

WOODY SPECIES (SRC)

- **Populus x canadensis nigra 'Oudenberg' :** cuttings plantation in June (2.0 x 0.75 m)
- Salix alba 'Dimitrios' : cuttings plantation in June (2.0 x 0.75 m)

Yields

ARU MIS PHR

* These value are referred to the part of the field in which the crop is still present

Giannini, V *et al.* (2017). Growth and nutrient uptake of perennial crops in a paludicultural approach in a drained Mediterranean peatland. *Ecological Engineering*, *103*, 478-487.

Yields

Giannini, V *et al.* (2017). Growth and nutrient uptake of perennial crops in a paludicultural approach in a drained Mediterranean peatland. *Ecological Engineering*, *103*, 478-487.

Biomass Harvesting

Biomass Quality - Combustion

Giannini, V *et al.* (2016). Combustibility of biomass from perennial crops cultivated on a rewetted Mediterranean peatland. Ecological Engineering, 97, 157-169.

Biomass Quality – Anaerobic digestion

Dragoni, F. (2017). Effect of harvest time and frequency on biomass quality and biomethane potential of common reed (*Phragmites australis*) under paludiculture conditions. Bioenergy Research, 10, 1066-1078.

Silvestri, N. *et al.* (2017). A multi-adaptive framework for the crop choice in paludicultural cropping systems. Italian Journal of Agronomy, 12(1).

A framework for supporting crop chioice

Criteria	Features	Tests and threshold values	DoS
Biological traits	Longevity	Perennial Annual	1.00
	Response to cutting	Coppice Rhizomatous/stolonifer Other	1.00 1.00 0.00
	Harvestabilty	>8 suitable weeks for crop harvesting* From 4 to 8 suitable weeks for crop harvesting* From 2 to 3 suitable weeks for crop harvesting* <2 suitable weeks for crop harvesting*	1.00 0.75 0.50 0.25
Biomass production	Relative productivity	>+50% than a control crop° From 0 to +50% than a control crop° From -50 to 0% than a control crop° <-50% than a control crop°	1.00 0.75 0.50 0.25
Attitude to cultivation	Yield gap	>+30% than under ordinary growing conditions [#] From 0 to +30% than under ordinary growing conditions [#] From -30 to 0% than under ordinary growing conditions [#] <-30% than under ordinary growing conditions [#]	1.00 0.75 0.50 0.25
Biomass quality [§]	Heat	HHV≥18 (MJ/kg) HHV<18 (MJ/kg)	1.00
	Combustibility	HEI>1.00 (pure number) HEI ranges from 0.75 to 1.00 (pure number) HEI ranges from 0.50 to 0.75 (pure number) HEI<0.50 (pure number)	1.00 0.75 0.50 0.25
	Methane	BMP $\ge 200 \text{ (mL CH}_4 \text{ gVS}^{-1})$ BMP $< 200 \text{ (mL CH}_4 \text{ gVS}^{-1})$	1.00
	Digestibility	C/N ratio <30 (pure number) C/N ratio from 30 to 40 (pure number) C/N ratio from 40 to 60 (pure number) C/N ratio >60 (pure number)	1.00 0.75 0.50 0.25

Table 1. Threshold values and correspondent degrees of suitability for all the features foreseen by the framework.

DoS, degree of suitability; HHV, higher heating value (estimated from carbon, hydrogen and oxygen content); HEI, harmful emission index (estimated from potassium, sodium, sulfur and chlorine content); BMP, biochemical methane potential [according to Triolo *et al.* (2011)]; C/N, carbon and nitrogen content ratio. *To be considered as suitable a week must comply with seasonality and plasticity conditions (see text); °a control crop is a crop grown in the same pedoclimate but under drained conditions (see text); ¹ordinary conditions mean no saturated soil, no high acidity or salinity, rainfed cultivation (see text); ⁵the two alternative pathways are combustion (heat and combustibility) and biogas conversion (methane and digestibility).

Silvestri, N. *et al.* (2017). A multi-adaptive framework for the crop choice in paludicultural cropping systems. Italian Journal of Agronomy, 12(1).

The decision tree

Silvestri, N. *et al.* (2017). A multi-adaptive framework for the crop choice in paludicultural cropping systems. Italian Journal of Agronomy, 12(1).

The output for our pilot experiment

Crops	ISV					Tests					FSV
		T ₁	T ₂	T ₃	T ₄	T 5	T _{6a}	T _{7a}	Тбь	Тъ	
		USV ₁	USV ₂	USV ₃	USV ₄	USV ₅	USV _{6a}	USV _{7a}	USV _{6b}	USV7b	
Arundo	100	100	100	100	100	50	50	25	-	-	25
Miscanthus	100	100	100	75	56	28	28	7	-	-	7
Phragmites	100	100	100	100	50	50	50	25	-	-	25
Arundo	100	100	100	100	100	50	-	-	50	38	38
Miscanthus	100	100	100	75	56	28	-	-	28	14	14
Phragmites	100	100	100	100	50	50	-	-	50	50	50
Salix	100	100	100	75	19	19	19	19			19
Popolus	100	100	100	75	38	9	9	9	-	-	9

ISV, Initial suitability value; T₁, longevity; T₂, response to cutting; T₃, harvestability; T₄, relative productivity; T₅, yield gap, combustion chain; T₆₀, higher heating value; T_{7a}, harmful emission index; T₆₀, biochemical methane potential; T₁₀, carbon and nitrogen content ratio; USV_{1-7b}, upgrade suitability values; FSV, final suitability value. For perennial rhizomatous grasses, both bioenergy chains were evaluated.

Conclusive remarks from an agronomic perspective

- Our adaptive approach 'PALUDICULTURE' was promising in terms of biomass production and biomass combustibility
- How can we answer to the two fundamentals of agronomy:
- WHAT TO CULTIVATE?
- HOW TO CULTIVATE?
- In this case maybe we should add:
- WHAT TO DO WITH THE HARVESTED BIOMASS?

THE CRUCIAL ROLE OF THE CROP CHOICE

Thank for your attention!