KLEIBER

Kleinprivatwald und Biodiversität: Erhalt durch Ressourcennutzung

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Peter Hansen, Andreas Mölder

Projektziele (allgemein)

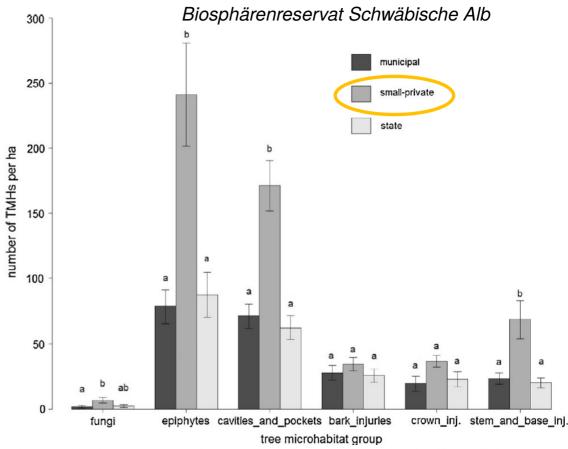
- Identifizierung der naturschutzfachlichen Werte im Kleinprivatwald vor dem Hintergrund einer steigenden Rohholznachfrage
- Sicherung dieser Werte im Rahmen einer auskömmlichen Waldnutzung
- Erarbeitung naturschutzfachlich-waldbaulicher Entscheidungshilfen
- Teilvorhaben 1: Koordination, naturschutzfachlichwaldbauliche Analysen, NW-FVA, Laufzeit: 04/2019 – 07/2023
- Teilvorhaben 2: Sozial-ökologische Analysen, Universität Göttingen, Laufzeit: 04/2019 – 05/2022

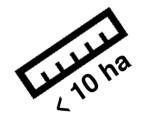
Kleinprivatwald seit ca. 1740

Staatswald seit ca. 1740

Strukturen und Verteilung von Waldbesitzarten

- Häufig unterschätze Einflussfaktoren in waldökologischen Studien
- Jedoch wichtig für die Entwicklung, Struktur und Artenzusammensetzung von Wäldern




Fig. 4. Tree microhabitat density per hectare summarised in groups. Mean and SEM. Different letters in a group indicate significant differences within the group (Tukey post hoc test; p < 0.05).

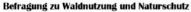
Johann, F., Schaich, H. (2016): Land ownership affects diversity and abundance of tree microhabitats in deciduous temperate forests. Forest Ecology and Management, 380, 70–81

(Klein-) Privatwald in Deutschland

43 % der Waldfläche 760 000 private Waldbesitzende

31 % der Privatwaldfläche 92 % der Privatwaldbesitzenden

DESTATIS-Pressemitteilung Nr. 415 vom 30. September 2022, Forststrukturerhebung 2022

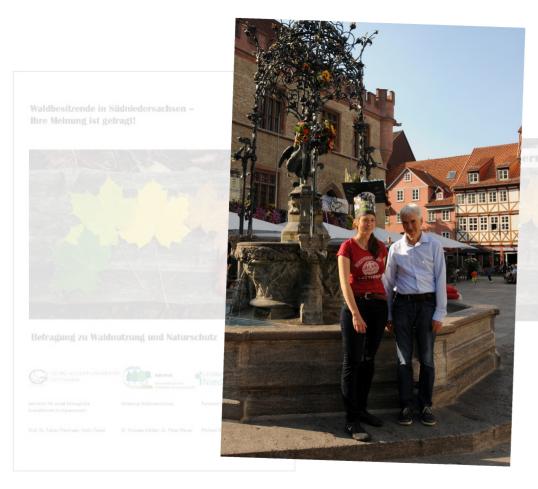


Sozialökologische Untersuchungen

Waldbesitzende in Südniedersachsen – Ihre Meinung ist gefragt!

Versand

2 Forstbetriebsgemeinschaften, 1 WSG 4204 Privatwaldbesitzende


Rücklauf

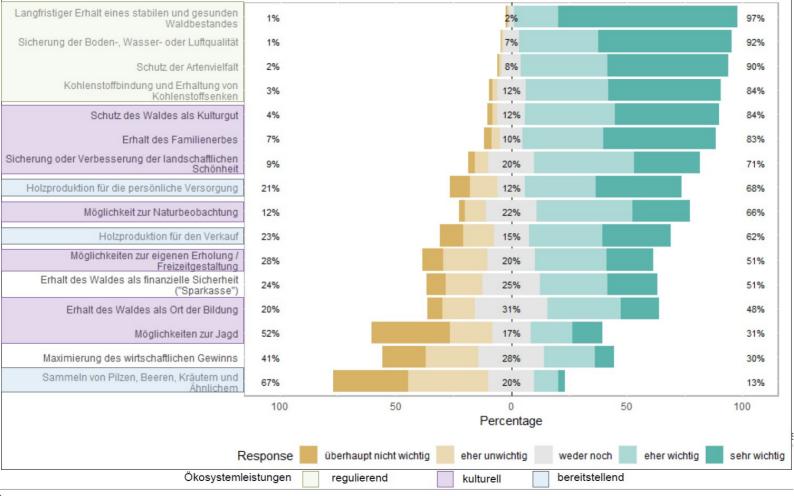
1671 verwertbare Antworten (39.75 %)

Sozialökologische Untersuchungen

Malin Tiebel, Promotion 2023

Prof. Dr. Tobias Plieninger

Lehrstuhl für sozial-ökologische Interaktionen in Agrarsystemen, Universität Göttingen


2 Forstbetriebsgemeinschaften, 1 WSG 4204 Privatwaldbesitzende

Rücklauf 1671 verwertbare Antworten (39.75 %)

Sozialökologische Untersuchungen

Tiebel et al. (2021) Eur J For Res

Waldbesitzenden-Typologie

Multifunktional orientierte Waldbesitzende (45 %)

Hauptcharakteristik

- größte Gruppe (45 %) mit größten Flurstücken
- höhere Wichtigkeit von ökonomischen Zielen / Ressourcennutzung
- meiste Maßnahmen / höchste Besuchsfrequenz
- öfter landwirtschaftlicher Hintergrund

Tiebel et al. (2023) [in review]

Schlussfolgerung

- Vereinbarkeit von Naturschutz und Nutzung
- naturschutzbezogene und praxisorientierte Beratung durch Forstleute
- Honorierung der Leistungen (z.B. Vertragsnaturschutz)

Waldbesitzenden-Typologie

"Konventionelle" Waldbesitzende (30 %)

Hauptcharakteristik

- geringere Wichtigkeit von kulturellen Zielen
- geringere Aktivität bzgl. Naturschutz / naturnahem Waldbau
- geringere Besuchsfrequenz / geringeres Wissen über Bestand

Tiebel et al. (2023) [in review]

Schlussfolgerung

- Förderung von Wissen/Bewusstsein über eigenen Wald und nicht-produktive Aspekte
- Fokus auf Maßnahmen mit leichter Umsetzung, z. B. Totholz-Erhalt
- Vereinbarkeit von Naturschutz und Nutzung
- Honorierung der Leistungen
- Bewahrung von Entscheidungsfreiheit

Waldbesitzenden-Typologie

Naturschutzorientierte Waldbesitzende (25 %)

Hauptcharakteristik

- geringere Wichtigkeit von wirtschaftlichen Zielen / Ressourcennutzung
- geringere Aktivität bzgl. "klassischer" waldbaulicher Maßnahmen
- größere Aktivität bei passiven Naturschutzmaßnahmen
- häufigere Bereitschaft Naturschutz ohne Entschädigung zu fördern
- höherer Laubwaldanteil

Schlussfolgerung

- Fortführung der extensiven Bewirtschaftung
- gezielte praxis- und naturschutzorientierte Beratung

Tiebel et al. (2023)
[in review]

Diversität

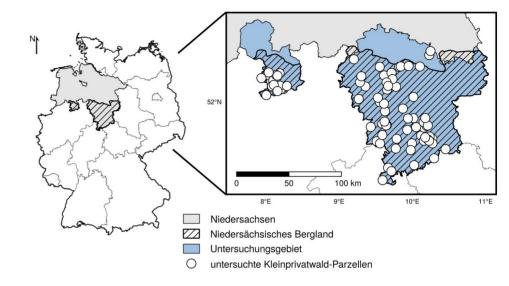
Vielfalt der Waldbesitzenden

→ Vielfalt der Waldstrukturen!



Waldbesitzenden-Einstellungen und Waldstrukturen

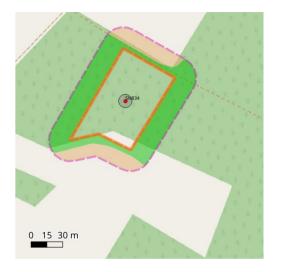
- Bestandesstrukturen im Kleinprivatwald, Verteilung wertvoller Habitate?
- Einfluss der Ziele und Aktivitäten der Waldbesitzenden?
- Erklärungsansätze, Implikationen für integrative Bewirtschaftung und Naturschutz?

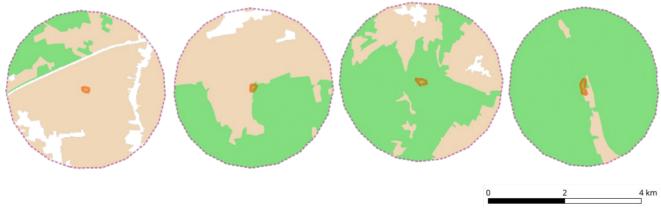


Untersuchungsgebiet, Methodik

- 81 KPW-Parzellen, 0,14 bis 3,8 ha, Median 1 ha
- Holzvolumina, Bewirtschaftungsintensität, naturschutzfachlich relevante Strukturen

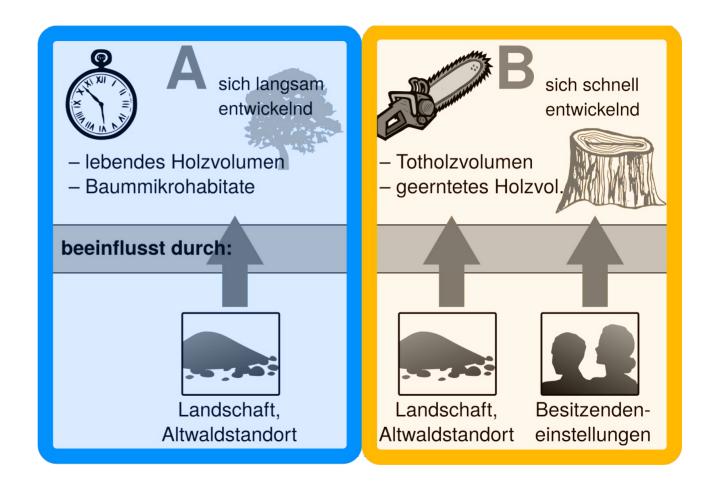
Biotope code	Biotope	Value (0-30 yrs)	Value (> 30-80 yrs)	Value (> 80 yrs)
WLM	acidophilic lowland Fagus sylvatica forest on clay	14	17	20
WMB	mesophilic hill/mountain Fagus sylvatica forest, base-poor	14	17	20
WMK	mesophilic hill/mountain Fagus sylvatica forest, base-rich	14	16	18
WMT	mesophilic lowland Fagus sylvatica forest, base-poor	14	17	20
WNS	miscellaneous swamp forest	15	18	21
WPB	Betula/Populus tremula pioneer forest	13	13	13
WPE	Acer/Fraxinus pioneer forest	13	13	13
WPS	miscellaneous pioneer forest	13	13	13
WQE	miscellaneous acidophilic Quercus mixed forest	15	19	22
WQF	medium-wet Quercus mixed forest on sand	15	20	23
WRM	highly structured forest border, average locations	16	16	16
WRT	highly structured forest border, dry, warm, base-rich	16	16	16
WRW	highly structured forest border with hedge bank	16	16	16
WSS	medium-wet ravine forest on silicate	15	17	20
WTB	Fagus sylvatica forest on dry, warm limestone	15	19	22
WXH	plantation of native broadleaf trees	11	13	16
WZD	plantation of Pseudotsuga menziesii	6	10	12
WZF	plantation of Picea abies	9	11	14
WZK	plantation of Pinus sylvestris	9	11	14
WZL	plantation of Larix decidua	9	11	14
WZS	miscellaneous plantation of non-native species	6	10	12
Wn	coppice forest	19	19	19


[Bing satellite imagery]



Landschaftsparameter

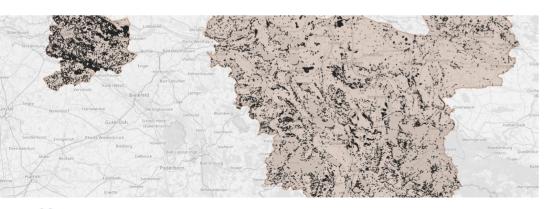
- Flächenanteile Wald und Offenland in der Umgebung (r = 2000 m)
- Anteil Waldrand (Grenze mit Offenlandfläche)
- Parzellengröße, Höhe, Steigung
- Historisch alter Waldstandort? (ab 200 Jahre, unterteilt in Laubwald, Mischwald, Nadelwald)

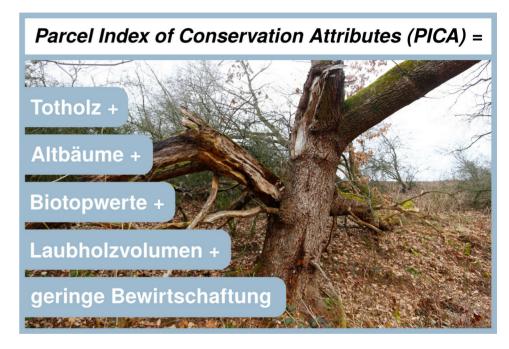


Zwei Arten von Strukturen im KPW

- Topografische
 Parameter wichtige
 Einflussfaktoren auf alle
 Strukturen
- Waldbesitzenden-Einstellungen wichtig für sich schnell entwickelnde Strukturen

Hansen et al. 2023 Eur J For Res

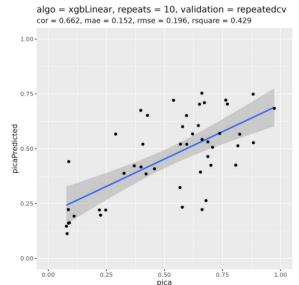

Potenzielle Hotspots der Waldbiodiversität

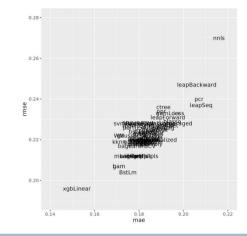

Idee

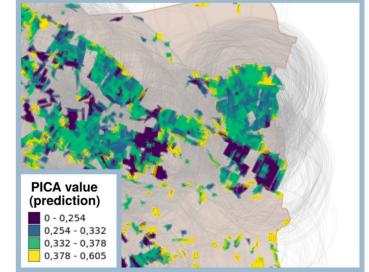
- räumliche Verteilung von Diversität verstehen
- zielgenaue Schutzkonzepte entwickeln

Herangehensweise

- KPW-Parzellen mit Index bewerten (PICA)
- Vorhersage von PICA-Werten auf Landschaftsebene







Vorhersagemodelle

- Vorhersage von PICA-Werten anhand topografischer Parameter der KPW-Parzellen
- Machine-Learning-Modelle trainieren
- interne Evaluation (cross-validation)
- externe Evaluation: Feldarbeit auf 48 zusätzlichen Parzellen

Hansen et al. (2023) [in preparation]

Räumliches Verteilungsmuster

Hohe Erwartungswerte für wertvolle Strukturen:

- kleine Parzellen
- viel Offenland, fragmentierte Landschaft
- Randstrukturen, Waldränder

Hansen et al. (2023) [in preparation]

Niedrige PICA-Werte:

- zusammenhängende Waldgebiete
- → wichtig für Planung Schutzgebietskulisse, Förderprogramme

Zusammenfassung und Ausblick

Bedeutung Kleinprivatwald

Waldbesitzart als wichtiger Einflussfaktor auf Waldstruktur (auch international)

Diversität als Gewinn

KPW: hohe Diversität, sowohl Strukturen als auch Besitzendenschaft

Ansprache der Waldbesitzenden

 Einbeziehung der Waldbesitzenden essenziell (N2000, Anreize), zielgruppengerecht

Ungleiche Verteilung als Herausforderung

- Einstellungen und Topografie als Einflüsse auf Waldstruktur
- zielgenauer Schutz naturschutzfachlich wertvoller Strukturen

Literatur, Dank

- Hansen, P. (2023) 'Über die Rolle von Kleinprivatwäldern für den Erhalt der Biodiversität', Mitteilungen aus der Alfred Toepfer Akademie für Naturschutz, 1.
- Hansen, P. (2023) 'Waldbesitzenden-Entscheidungen im Kleinprivatwald: Ein Hands-on-Workshop', in Junge Naturschutz-Forschung in Niedersachsen Ergebnisse des 1. Kolloquiums für Nachwuchswissenschaftlerinnen und -wissenschaftler an der NNA. (Naturschutz in Praxis und Forschung, Berichte aus der Alfred Toepfer Akademie für Naturschutz. 1/2023), http://doi.org/10.23766/NiPF.202301.13
- Hansen, P. et al. (2023) 'Owner attitudes and landscape parameters drive stand structure and valuable habitats in small-scale private forests of Lower • Saxony (Germany)', European Journal of Forest Research, 142(5), S. 1011-1028, https://doi.org/10.1007/s10342-023-01571-y
- Hansen, P. et al. (2023) 'The Parcel Index of Conservation Attributes (PICA) to evaluate and predict hotspots of biodiversity in small-scale private forests', (in Vorbereitung).
- Tiebel, M. et al. (2023) 'Engaging small-scale private forest owners for transformative change towards integrative conservation', (in review).
- Tiebel, M., Mölder, A. and Plieninger, T. (2021) 'Small-scale private forest owners and the European Natura 2000 conservation network: Perceived ecosystem services, management practices, and nature conservation attitudes', European Journal of Forest Research, 140(6), S. 1515–1531. https://doi.org/10.1007/s10342-021-01415-7
- Tiebel, M., Mölder, A. and Plieninger, T. (2022) 'Conservation perspectives of small-scale private forest owners in Europe: A systematic review', Ambio, 51(4), S. 836-848. https://doi.org/10.1007/s13280-021-01615-w

Gefördert durch:

(FKZ 22001218, 22023218)

aufgrund eines Beschlusses des Deutschen Bundestages

